Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic

被引:2
|
作者
Son, Chang-Il [1 ,2 ]
Xia, Shun-ren [1 ]
机构
[1] Zhejiang Univ, MOE Key Lab Biomed Engn, Hangzhou 310027, Peoples R China
[2] Kim Chaek Univ Technol, Dept Elect, Pyongyang 104919, North Korea
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS | 2012年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
Diffusion tensor (DT); DT imaging (DTI); DT interpolation; Interpolation profile control; Riemannian geodesic; STATISTICAL-ANALYSIS; WHITE-MATTER; HUMAN BRAIN; IMAGES; DTI; MRI; CONNECTIVITY; FRAMEWORK; CALCULUS;
D O I
10.1631/jzus.C1100098
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Riemannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a 'fixed' interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 27 条
  • [1] Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic
    Chang-Il Son
    Shun-ren Xia
    Journal of Zhejiang University SCIENCE C, 2012, 13 : 90 - 98
  • [2] Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic
    Chang-Il SON
    Frontiers of Information Technology & Electronic Engineering, 2012, (02) : 90 - 98
  • [3] Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics
    Zhou, Diwei
    Dryden, Ian L.
    Koloydenko, Alexey A.
    Audenaert, Koenraad M. R.
    Bai, Li
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (05) : 943 - 978
  • [4] Non-uniform Motion Deblurring for Bilayer Scenes
    Paramanand, C.
    Rajagopalan, A. N.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1115 - 1122
  • [5] Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model
    Afzali, Maryam
    Fatemizadeh, Emad
    Soltanian-Zadeh, Hamid
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 253 : 28 - 37
  • [6] Segmentation of MRI brain scans using non-uniform partial volume densities
    Brouwer, Rachel M.
    Pol, Hilleke E. Hulshoff
    Schnack, Hugo G.
    NEUROIMAGE, 2010, 49 (01) : 467 - 477
  • [7] Non-uniform motion deblurring with blurry component divided guidance
    Wang, Pei
    Sun, Wei
    Yan, Qingsen
    Niu, Axi
    Li, Rui
    Zhu, Yu
    Sun, Jinqiu
    Zhang, Yanning
    PATTERN RECOGNITION, 2021, 120
  • [8] Susceptibility Distortion Correction for Echo Planar Images with Non-uniform B-Spline Grid Sampling: A Diffusion Tensor Image Study
    Irfanoglu, M. O.
    Walker, L.
    Sammet, S.
    Pierpaoli, C.
    Machiraju, R.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II, 2011, 6892 : 174 - +
  • [9] A Cascaded Economic Model Predictive Control Strategy for a Diesel Engine using a Non-Uniform Prediction Horizon Discretization
    Liao-McPherson, Dominic
    Kim, Shinhoon
    Butts, Ken
    Kolmanovsky, Ilya
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 979 - 986
  • [10] Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines
    Jin, Renchao
    Liu, Yongchuan
    Chen, Mi
    Zhang, Sheng
    Song, Enmin
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (01):