Topology of definable abelian groups in o-minimal structures

被引:3
作者
Baro, Elias [1 ]
Berarducci, Alessandro [2 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Algebra, E-28040 Madrid, Spain
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
HOMOTOPY;
D O I
10.1112/blms/bdr108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that every definably connected, definably compact abelian definable group G in an o-minimal expansion of a real closed field with dim(G)not equal 4 is definably homeomorphic to a torus of the same dimension. Moreover, in the semialgebraic case the result holds for all dimensions.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1999, Mathematical surveys and monographs
[2]  
[Anonymous], 1998, Tame topology and ominimal structures, DOI DOI 10.1017/CBO9780511525919
[3]   on the o-minimal LS-category [J].
Baro, Elias .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 185 (01) :61-76
[4]   ON O-MINIMAL HOMOTOPY GROUPS [J].
Baro, Elias ;
Otero, Margarita .
QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (03) :275-289
[5]   A descending chain condition for groups definable in o-minimal structures [J].
Berarducci, A ;
Otero, M ;
Peterzil, Y ;
Pillay, A .
ANNALS OF PURE AND APPLIED LOGIC, 2005, 134 (2-3) :303-313
[6]   On the homotopy type of definable groups in an o-minimal structure [J].
Berarducci, Alessandro ;
Mamino, Marcello .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 :563-586
[7]   HIGHER HOMOTOPY OF GROUPS DEFINABLE IN O-MINIMAL STRUCTURES [J].
Berarducci, Alessandro ;
Mamino, Marcello ;
Otero, Margarita .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 180 (01) :143-161
[8]  
Conversano A., 2009, ARXIV09124753
[9]  
Conversano A., 2009, On the connections between definable groups in o-minimal structures and real Lie groups: The non-compact case
[10]   Invariance results for definable extensions of groups [J].
Edmundo, Mario J. ;
Jones, Gareth O. ;
Peatfield, Nicholas J. .
ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (1-2) :19-31