Statistics of Resonance Width Shifts as a Signature of Eigenfunction Nonorthogonality

被引:71
作者
Fyodorov, Yan V. [1 ]
Savin, Dmitry V. [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
CHAOTIC SCATTERING; RANDOM MATRICES; PHASE-SHIFTS; PARAMETRIC CORRELATIONS; WAVE-FUNCTIONS; TIME DELAYS; QUANTUM; SYSTEMS; FLUCTUATIONS; DYNAMICS;
D O I
10.1103/PhysRevLett.108.184101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an open (scattering) quantum system under the action of a perturbation of its closed counterpart. It is demonstrated that the resulting shift of resonance widths is a sensitive indicator of the nonorthogonality of resonance wave functions, being zero only if those were orthogonal. Focusing further on chaotic systems, we employ random matrix theory to introduce a new type of parametric statistics in open systems and derive the distribution of the resonance width shifts in the regime of weak coupling to the continuum.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Universal correlations of Coulomb-blockade conductance peaks and the rotation scaling in quantum dots
    Alhassid, Y
    Attias, H
    [J]. PHYSICAL REVIEW B, 1996, 54 (04): : 2696 - 2714
  • [2] [Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
  • [3] [Anonymous], 1966, P OXF INT C EL PART
  • [4] Global versus local billiard level dynamics:: The limits of universality
    Barth, M
    Kuhl, U
    Stöckmann, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2026 - 2029
  • [5] Inhomogeneous resonance broadening and statistics of complex wave functions in a chaotic microwave cavity
    Barthélemy, J
    Legrand, O
    Mortessagne, F
    [J]. EUROPHYSICS LETTERS, 2005, 70 (02): : 162 - 168
  • [6] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [7] Wave function statistics in open chaotic billiards
    Brouwer, PW
    [J]. PHYSICAL REVIEW E, 2003, 68 (04):
  • [8] Distribution of parametric conductance derivatives of a quantum dot
    Brouwer, PW
    vanLangen, SA
    Frahm, KM
    Buttiker, M
    Beenakker, CWJ
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (05) : 913 - 916
  • [9] Distribution of Resonance Widths and Dynamics of Continuum Coupling
    Celardo, G. L.
    Auerbach, N.
    Izrailev, F. M.
    Zelevinsky, V. G.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (04)
  • [10] Di Falco A., ARXIV11091988