Drought-induced mortality of a Bornean tropical rain forest amplified by climate change

被引:37
作者
Kumagai, Tomo'omi [1 ,2 ]
Porporato, Amilcare [2 ]
机构
[1] Nagoya Univ, Hydrospher Atmospher Res Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27706 USA
基金
美国国家科学基金会; 日本学术振兴会; 日本科学技术振兴机构;
关键词
WATER-CONTROLLED ECOSYSTEMS; EL-NINO; JUNIPERUS-OSTEOSPERMA; HYDROLOGIC PROCESSES; TREE MORTALITY; SOIL-MOISTURE; WOODY-PLANTS; PINUS-EDULIS; ACTIVE-ROLE; CARBON;
D O I
10.1029/2011JG001835
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rain forests, where severe droughts are projected to occur more frequently, especially under El Nino conditions. We examine how the mortality of a Bornean tropical rain forest is altered by projected shifts in rainfall, using field measurements, global climate model (GCM) simulation outputs, and an index developed for drought-induced tree mortality (Tree Death Index h) associated with a stochastic ecohydrological model. All model parameters have clear physical meanings and were obtained by field observations. Rainfall statistics as primary model forcing terms are constructed from long-term rainfall records for the late 20th century, and 14 GCM rainfall projections for the late 21st century. These statistics indicate that there were sporadic severe droughts corresponding with El Nino events, generally occurring in January-March, and that seasonality in rainfall will become more pronounced, e. g., dry (January-March) seasons becoming drier and wet (October-December) seasons becoming wetter. The computed eta well reflects high tree mortality under severe drought during the 1997-1998 El Nino event. For the present, model results demonstrate high and low probabilities of mortality in January-March and October-December, respectively, and they predict that the difference in such probabilities will increase in the future. Such high probability of mortality in the dry season is still significantly high, even considering the beneficial effect of increased soil water storage in the wet season (which is projected to increase in the late 21st century).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Physiological mechanisms of drought-induced tree mortality are far from being resolved
    Sala, Anna
    Piper, Frida
    Hoch, Guenter
    NEW PHYTOLOGIST, 2010, 186 (02) : 274 - 281
  • [42] Towards species-level forecasts of drought-induced tree mortality risk
    De Kauwe, Martin G.
    Sabot, Manon E. B.
    Medlyn, Belinda E.
    Pitman, Andrew J.
    Meir, Patrick
    Cernusak, Lucas A.
    Gallagher, Rachael, V
    Ukkola, Anna M.
    Rifai, Sami W.
    Choat, Brendan
    NEW PHYTOLOGIST, 2022, 235 (01) : 94 - 110
  • [43] Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability
    Wang, Yong-Qiang
    Song, Hui-Qing
    Chen, Ya-Jun
    Fu, Pei-Li
    Zhang, Jiao-Lin
    Cao, Kun-Fang
    Zhu, Shi-Dan
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 331
  • [44] Tropical forest restoration under future climate change
    Koch, Alexander
    Kaplan, Jed O.
    NATURE CLIMATE CHANGE, 2022, 12 (03) : 279 - +
  • [45] Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas
    Schwantes, Amanda M.
    Swenson, Jennifer J.
    Jackson, Robert B.
    REMOTE SENSING OF ENVIRONMENT, 2016, 181 : 54 - 64
  • [46] Landscape-scale forest restoration decreases vulnerability to drought mortality under climate change in southwest USA ponderosa forest
    McCauley, Lisa A.
    Bradford, John. B.
    Robles, Marcos D.
    Shriver, Robert K.
    Woolley, Travis J.
    Andrews, Caitlin A.
    FOREST ECOLOGY AND MANAGEMENT, 2022, 509
  • [47] Plant community response to drought-induced canopy defoliation in a Mediterranean Quercus ilex forest
    Saura-Mas, S.
    Bonas, A.
    Lloret, F.
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2015, 134 (02) : 261 - 272
  • [48] Beneath the canopy: Linking drought-induced forest die off and changes in soil properties
    Gazol, Antonio
    Julio Camarero, J.
    Jimenez, Juan J.
    Moret-Fernandez, David
    Victoria Lopez, M.
    Sangueesa-Barreda, Gabriel
    Igual, Jose M.
    FOREST ECOLOGY AND MANAGEMENT, 2018, 422 : 294 - 302
  • [49] The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality
    Oliva, Jonas
    Stenlid, Jan
    Martinez-Vilalta, Jordi
    NEW PHYTOLOGIST, 2014, 203 (04) : 1028 - 1035
  • [50] Woodland recovery following drought-induced tree mortality across an environmental stress gradient
    Redmond, Miranda D.
    Cobb, Neil S.
    Clifford, Michael J.
    Barger, Nichole N.
    GLOBAL CHANGE BIOLOGY, 2015, 21 (10) : 3685 - 3695