A quasi-tree expansion of the Krushkal polynomial

被引:7
作者
Butler, Clark
机构
关键词
Ribbon graph polynomials; Quasi-trees; Partial duality; GRAPHS; SURFACES; DUALITY;
D O I
10.1016/j.aam.2016.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a generalization of the Krushkal polynomial to nonorientable surfaces, and prove that this polynomial has a natural quasi-tree expansion. This generalized Krushkal polynomial contains the Bollobas-Riordan polynomial of a (possibly nonorientable) ribbon graph as a specialization. The quasi-tree expansion proven here then extends the recent quasi-tree expansions of the Bollobas-Riordan polynomial deduced in the oriented case by A. Champanerkar et al. and in the more general unoriented case by E. Dewey and F. Vignes-Tourneret. The generalized Krushkal polynomial also contains the Las Vergnas polynomial of a cellulation of a surface as a specialization; we use this fact to deduce a quasi tree expansion for the Las Vergnas polynomial. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:3 / 22
页数:20
相关论文
共 15 条
[1]  
[Anonymous], 1980, Ann. Discrete Math., DOI DOI 10.1016/S0167-5060(08)70841-0
[2]  
[Anonymous], 2010, Matroid theory
[3]   Polynomial invariants of graphs on surfaces [J].
Askanazi, Ross ;
Chmutov, Sergei ;
Estill, Charles ;
Michel, Jonathan ;
Stollenwerk, Patrick .
QUANTUM TOPOLOGY, 2013, 4 (01) :77-90
[4]   A polynomial of graphs on surfaces [J].
Bollobás, B ;
Riordan, O .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :81-96
[5]   ARROW RIBBON GRAPHS [J].
Bradford, Robert ;
Butler, Clark ;
Chmutov, Sergei .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (13)
[6]   Graphs on surfaces and Khovanov homology [J].
Champanerkar, Abhijit ;
Kofman, Ilya ;
Stoltzfus, Neal .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 :1531-1540
[7]   Quasi-tree expansion for the Bollobas-Riordan-Tutte polynomial [J].
Champanerkar, Abhijit ;
Kofman, Ilya ;
Stoltzfus, Neal .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :972-984
[8]   Generalized duality for graphs on surfaces and the signed Bollobas-Riordan polynomial [J].
Chmutov, Sergei .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (03) :617-638
[9]  
Dewey E., QUASITREE EXPA UNPUB
[10]   TWISTED DUALITY FOR EMBEDDED GRAPHS [J].
Ellis-Monaghan, Joanna A. ;
Moffatt, Iain .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) :1529-1569