TIME PERIODIC SOLUTION TO A COUPLED CHEMOTAXIS-FLUID MODEL WITH POROUS MEDIUM DIFFUSION

被引:9
作者
Huang, Jiapeng [1 ]
Jin, Chunhua [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Chemotaxis-fluid system; time periodic solution; double-level approximation scheme; KELLER-SEGEL SYSTEM; GLOBAL WEAK SOLUTIONS; HAPTOTAXIS MODEL; STABILIZATION; BLOWUP;
D O I
10.3934/dcds.2020233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the time periodic problem to a cou- pled chemotaxis-fluid model with porous medium diffusion Delta n(m) The global existence of solutios for the initial and boundary value problem of this model have been studied by many authors, and in particular, the global solvability is established for m > 6/5 in dimension 3. Here, taking advantage of a double-level approximation scheme, we establish the existence of uniformly bounded time periodic solution for any m >= 6/5 and any large periodic source g(x , t). In particular, the energy estimates techniques we used also applicable to the proof of global existence of the initial-boundary value problem, and one can supply the existence of global solutions for m = 6/5 by this method.
引用
收藏
页码:5415 / 5439
页数:25
相关论文
共 25 条
[1]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[2]   Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities [J].
Cao, Xinru ;
Lankeit, Johannes .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[3]   Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 :129-144
[4]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[5]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[6]   Reaction terms avoiding aggregation in slow fluids [J].
Espejo, Elio ;
Suzuki, Takashi .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :110-126
[7]  
Jin C., 2019, P ROY SOC EDINBURG A
[8]   Large time periodic solutions to coupled chemotaxis-fluid models [J].
Jin, Chunhua .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06)
[9]   Large time periodic solution to the coupled chemotaxis-Stokes model [J].
Jin, Chunhua .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) :1701-1715
[10]   Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion [J].
Laurencot, Philippe ;
Mizoguchi, Noriko .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (01) :197-220