Some results on paracontact metric (k, μ)-manifolds with respect to the Schouten-van Kampen connection

被引:2
|
作者
Perktas, Selcen Yuksel [1 ]
De, Uday Chand [2 ]
Yildiz, Ahmet [3 ]
机构
[1] Adiyaman Univ, Dept Math, Art & Sci Fac, Adiyaman, Turkey
[2] Univ Calcutta, Dept Pure Math, Kolkata, India
[3] Inonu Univ, Educ Fac, Dept Math, Malatya, Turkey
来源
关键词
Schouten-van Kampen connection; paracontact metric (k; mu)-manifolds; Ricci semisymmetric; Einstein manifold; eta-Einstein manifold; solitons; RICCI SOLITONS; STRUCTURE THEOREMS; CONTACT;
D O I
10.15672/hujms.941744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study certain symmetry conditions and some types of solitons on paracontact metric (k, mu)-manifolds with respect to the Schouten-van Kampen connection. We prove that a Ricci semisymmetric paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection is an g-Einstein manifold. We investigate paracontact metric (k, mu)-manifolds satisfying (sic) . (sic)(cur) = 0 with respect to the Schouten-van Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a (2n + 1)-dimensional paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection such that k > -1 or k < -1. In case of the metric is being an almost gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we state that the manifold is either N(k)-paracontact metric manifold or an Einstein manifold. Finally, we present some results related to almost Yamabe solitons in a paracontact metric (k, mu)-manifold equipped with the Schouten-van Kampen connection and construct an example which verifies some of our results.
引用
收藏
页码:466 / 482
页数:17
相关论文
共 50 条
  • [21] GENERALIZED η-RICCI SOLITONS ON QUASI-SASAKIAN 3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Azami, Shahroud
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 655 - 667
  • [22] Certain vector fields on f-Kenmotsu manifold with Schouten-van Kampen connection
    Sah, Vaishali
    Yadav, Sarvesh Kumar
    Upreti, Jaya
    FILOMAT, 2024, 38 (02) : 531 - 541
  • [23] SOME RESULTS ON GENERALIZED (k, mu)-PARACONTACT METRIC MANIFOLDS
    Makhal, Sourav
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (03): : 401 - 408
  • [24] Pair of Associated Schouten-Van Kampen Connections Adapted to an Almost Contact B-Metric Structure
    Manev, Mancho
    FILOMAT, 2015, 29 (10) : 2437 - 2446
  • [25] Quasi-Statistical Schouten-van Kampen Connections on the Tangent Bundle
    Druta-Romaniuc, Simona-Luiza
    MATHEMATICS, 2023, 11 (22)
  • [26] Some Results on Almost Paracontact Metric Manifolds
    Perrone, Antonella
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3311 - 3326
  • [27] Some Results on Almost Paracontact Metric Manifolds
    Antonella Perrone
    Mediterranean Journal of Mathematics, 2016, 13 : 3311 - 3326
  • [28] Certain results on N(k)-paracontact metric manifolds
    Mandal, Krishanu
    Mandal, Dhananjoy
    NOTE DI MATEMATICA, 2018, 38 (02): : 21 - 33
  • [29] The Schouten–Van Kampen connection on the (1, 1)-tensor bundle
    Altunbas M.
    Gezer A.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (3): : 557 - 567
  • [30] SOME RESULTS ON PSEUDOSYMMETRIC NORMAL PARACONTACT METRIC MANIFOLDS
    Atceken, Mehmet
    Mert, Tugba
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (04): : 1044 - 1058