Some results on paracontact metric (k, μ)-manifolds with respect to the Schouten-van Kampen connection

被引:2
|
作者
Perktas, Selcen Yuksel [1 ]
De, Uday Chand [2 ]
Yildiz, Ahmet [3 ]
机构
[1] Adiyaman Univ, Dept Math, Art & Sci Fac, Adiyaman, Turkey
[2] Univ Calcutta, Dept Pure Math, Kolkata, India
[3] Inonu Univ, Educ Fac, Dept Math, Malatya, Turkey
来源
关键词
Schouten-van Kampen connection; paracontact metric (k; mu)-manifolds; Ricci semisymmetric; Einstein manifold; eta-Einstein manifold; solitons; RICCI SOLITONS; STRUCTURE THEOREMS; CONTACT;
D O I
10.15672/hujms.941744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study certain symmetry conditions and some types of solitons on paracontact metric (k, mu)-manifolds with respect to the Schouten-van Kampen connection. We prove that a Ricci semisymmetric paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection is an g-Einstein manifold. We investigate paracontact metric (k, mu)-manifolds satisfying (sic) . (sic)(cur) = 0 with respect to the Schouten-van Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a (2n + 1)-dimensional paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection such that k > -1 or k < -1. In case of the metric is being an almost gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we state that the manifold is either N(k)-paracontact metric manifold or an Einstein manifold. Finally, we present some results related to almost Yamabe solitons in a paracontact metric (k, mu)-manifold equipped with the Schouten-van Kampen connection and construct an example which verifies some of our results.
引用
收藏
页码:466 / 482
页数:17
相关论文
共 50 条
  • [1] SOME CURVATURE PROPERTIES ON PARACONTACT METRIC (k, μ)-MANIFOLDS WITH RESPECT TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Yildiz, Ahmet
    Perktas, Selcen Yuksel
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 395 - 408
  • [2] CONFORMAL RICCI SOLITON ON PARACONTACT METRIC (k, μ)-MANIFOLDS WITH SCHOUTEN-VAN KAMPEN CONNECTION
    Mandal, Pardip
    Shahid, Mohammad Hasan
    Yadav, Sarvesh Kumar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (01): : 161 - 173
  • [3] On Schouten-van Kampen Connection in Sasakian Manifolds
    Ghosh, Gopal
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 171 - 182
  • [4] A note on a-cosymplectic manifolds with respect to the Schouten-van Kampen connection
    Beyendi, Selahattin
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [5] KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION
    Halammanavar, Nagaraja Gangadharappa
    Devasandra, Kiran Kumar Lakshmana
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (01): : 23 - 34
  • [6] On f-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection
    Perktas, Selcen Yuksel
    YILDIZ, Ahmet
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 387 - 409
  • [7] On Quasi-Sasakian 3-Manifolds with Respect to the Schouten-van Kampen Connection
    Perktas, Selcen Yuksel
    Yildiz, Ahmet
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 62 - 74
  • [8] On Para-Sasakian Manifold with Respect to the Schouten-van Kampen Connection
    Sundriyal, Shivani
    Upreti, Jaya
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 349 - 357
  • [9] ON f-KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION
    Mondal, Ashis
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 333 - 344
  • [10] Almost Paracontact Almost Paracomplex Riemannian Manifolds with a Pair of Associated Schouten-van Kampen Connections
    Manev, Hristo
    Manev, Mancho
    MATHEMATICS, 2021, 9 (07)