Synchronization Analysis on Two-Layer Networks of Fractional-Order Systems: IntraIayer and InterIayer Synchronization

被引:31
作者
Zhang, Xia [1 ]
Tang, Longkun [1 ]
Lu, Jinhu [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing Adv Innovat Ctr Big Data & Brain Comp, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Oscillators; Couplings; Linear matrix inequalities; Multiplexing; Lyapunov methods; Network topology; Intra-layer synchronization; inter-layer synchronization; multilayer networks; fractional order; Lyapunov stability method; COMPLEX DYNAMICAL NETWORKS; DIFFERENTIAL-EQUATIONS; MULTIAGENT SYSTEMS; STABILITY; MODELS; CHAOS;
D O I
10.1109/TCSI.2020.2971608
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper focuses on a two-layer network composed of fractional-order oscillators, and investigates the mesoscale collective dynamical behaviors of the network, i.e., intra-layer synchronization and inter-layer synchronization. Specifically, the necessary constraint conditions are firstly presented for achieving intra-layer synchronization and inter-layer synchronization. With the constraints, based on the Lyapunov stability theory and the fractional-order system theory, sufficient conditions for inter-layer synchronization and intra-layer synchronization are obtained respectively. Interestingly, the conditions cover the basic synchronization criteria bridging the relationship of interacting between the topologies, inner coupling functions and coupling strengthes of the intra-layer and the inter-layer. Finally, numerical examples are provided to further verify the theoretical results.
引用
收藏
页码:2397 / 2408
页数:12
相关论文
共 65 条
[1]   Fractional-order Wien-bridge oscillator [J].
Ahmad, W ;
El-khazali, R ;
Elwakil, AS .
ELECTRONICS LETTERS, 2001, 37 (18) :1110-1112
[2]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[3]   Introduction to Focus Issue: Mesoscales in Complex Networks [J].
Almendral, Juan A. ;
Criado, Regino ;
Leyva, Inmaculada ;
Buldu, Javier M. ;
Sendina-Nadal, Irene .
CHAOS, 2011, 21 (01)
[4]   Chaos control and synchronization of fractional order delay-varying computer virus propagation model [J].
Ansari, Moien Ahmad ;
Arora, Deepak ;
Ansari, Sana Parveen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (05) :1197-1205
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Mesoscale and clusters of synchrony in networks of bursting neurons [J].
Belykh, Igor ;
Hasler, Martin .
CHAOS, 2011, 21 (01)
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[9]   Suppressing cascades of load in interdependent networks [J].
Brummitt, Charles D. ;
D'Souza, Raissa M. ;
Leicht, E. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (12) :E680-E689
[10]   Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks [J].
Chen, Diyi ;
Zhang, Runfan ;
Liu, Xinzhi ;
Ma, Xiaoyi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) :4105-4121