First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations

被引:18
|
作者
Schmuck, Markus [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2012年 / 92卷 / 04期
基金
瑞士国家科学基金会;
关键词
Homogenization; two-scale convergence; Poisson-Nernst-Planck equations; porous media; supercapacitors; scanning electron microscopy (SEM); TRANSPORT-EQUATIONS; HOMOGENIZATION; CONVECTION; MODEL;
D O I
10.1002/zamm.201100003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-accepted Poisson-Nernst-Planck equations modeling transport of charged particles. By formal multiscale expansions we rederive the porous media formulation obtained by two-scale convergence in [42, 43]. The main result is the derivation of the error which occurs after replacing a highly heterogeneous solid-electrolyte composite by a homogeneous one. The derived estimates show that the approximation errors for both, the ion densities quantified in L2-norm and the electric potential measured in H1-norm, are of order O(s1/2).
引用
收藏
页码:304 / 319
页数:16
相关论文
共 50 条
  • [31] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [32] A stabilized finite volume element method for solving Poisson-Nernst-Planck equations
    Li, Jiao
    Ying, Jinyong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2022, 38 (01)
  • [33] A study of the numerical stability of an ImEx scheme with application to the Poisson-Nernst-Planck equations
    Pugh, M. C.
    Yan, David
    Dawson, F. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 239 - 253
  • [34] Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries
    Burger, M.
    Schlake, B.
    Wolfram, M-T
    NONLINEARITY, 2012, 25 (04)
  • [35] Computation of Poisson-Nernst-Planck equations describing ion channel on cell membrane
    Horng, Tzyy-Leng
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 168 - 168
  • [36] ASYMPTOTIC ANALYSIS ON DIELECTRIC BOUNDARY EFFECTS OF MODIFIED POISSON-NERNST-PLANCK EQUATIONS
    Ji, Lijie
    Liu, Pei
    Xu, Zhenli
    Zhou, Shenggao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (03) : 1802 - 1822
  • [37] Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches
    Xu, Zhenli
    Ma, Manman
    Liu, Pei
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [38] FINITE DOMAIN EFFECTS IN STEADY STATE SOLUTIONS OF POISSON-NERNST-PLANCK EQUATIONS
    Elad, Doron
    Gavish, Nir
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (03) : 1030 - 1050
  • [39] A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 363 - 376
  • [40] Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations
    Shen, Jie
    Xu, Jie
    NUMERISCHE MATHEMATIK, 2021, 148 (03) : 671 - 697