Subgradient Method for Convex Feasibility on Riemannian Manifolds

被引:53
作者
Bento, Glaydston C. [1 ]
Melo, Jefferson G. [1 ]
机构
[1] IME Univ Fed Goias, BR-74001970 Goiania, Go, Brazil
关键词
Nonsmooth analysis; Feasibility problem; General convexity; Subgradient algorithm; Riemannian manifolds; PROXIMAL POINT ALGORITHM; NEWTONS METHOD; VARIATIONAL-INEQUALITIES; VECTOR-FIELDS; MONOTONE; OPTIMIZATION; CONVERGENCE; LIPSCHITZ; SECTIONS; MAPPINGS;
D O I
10.1007/s10957-011-9921-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a subgradient type algorithm for solving convex feasibility problem on Riemannian manifold is proposed and analysed. The sequence generated by the algorithm converges to a solution of the problem, provided the sectional curvature of the manifold is non-negative. Moreover, assuming a Slater type qualification condition, we analyse a variant of the first algorithm, which generates a sequence with finite convergence property, i.e., a feasible point is obtained after a finite number of iterations. Some examples motivating the application of the algorithm for feasibility problems, nonconvex in the usual sense, are considered.
引用
收藏
页码:773 / 785
页数:13
相关论文
共 38 条
[1]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[2]   A unifying local convergence result for Newton's method in Riemannian manifolds [J].
Alvarez, F. ;
Bolte, J. ;
Munier, J. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) :197-226
[3]  
[Anonymous], 1996, TRANSLATIONS MATH MO
[4]   An implicit trust-region method on Riemannian manifolds [J].
Baker, C. G. ;
Absil, P. -A. ;
Gallivan, K. A. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) :665-689
[5]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[6]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[7]   A primal dual modified subgradient algorithm with sharp Lagrangian [J].
Burachik, Regina S. ;
Iusem, Alfredo N. ;
Melo, Jefferson G. .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) :347-361
[8]   Iterative methods of solving stochastic convex feasibility problems and applications [J].
Butnariu, D ;
Iusem, AN ;
Burachik, RS .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 15 (03) :269-307
[9]   ON THE BEHAVIOR OF SUBGRADIENT PROJECTIONS METHODS FOR CONVEX FEASIBILITY PROBLEMS IN EUCLIDEAN SPACES [J].
Butnariu, Dan ;
Censor, Yair ;
Gurfil, Pini ;
Hadar, Ethan .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) :786-807
[10]   ON THE USE OF CIMMINO SIMULTANEOUS PROJECTIONS METHOD FOR COMPUTING A SOLUTION OF THE INVERSE PROBLEM IN RADIATION-THERAPY TREATMENT PLANNING [J].
CENSOR, Y ;
ALTSCHULER, MD ;
POWLIS, WD .
INVERSE PROBLEMS, 1988, 4 (03) :607-623