Melatonin and arbuscular mycorrhizal fungi synergistically improve drought toleration in kiwifruit seedlings by increasing mycorrhizal colonization and nutrient uptake

被引:6
|
作者
Xia, Hui [1 ]
Yang, Chunguo [1 ]
Liang, Yan [1 ]
He, Zunzhen [1 ]
Guo, Yuqi [1 ]
Lang, Yuxuan [1 ]
Wei, Jie [2 ]
Tian, Xinbo [1 ]
Lin, Lijin [1 ]
Deng, Honghong [1 ]
Wang, Jin [1 ]
Lv, Xiulan [1 ]
Liang, Dong [1 ]
机构
[1] Sichuan Agr Univ, Coll Hort, Chengdu, Peoples R China
[2] Inner Mongolia Univ, Coll Life Sci, Hohhot, Peoples R China
来源
关键词
arbuscular mycorrhizal fungi; melatonin; kiwifruit; drought tolerance; biomass; nutrient uptake; GROWTH; WATER; STRESS;
D O I
10.3389/fpls.2022.1073917
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Kiwifruit is a vine fruit tree that is vulnerable to water deficiency due to its shallow root system and large leaves. Although mycorrhizal inoculation and melatonin application has been proved to improve plants drought tolerance, their interaction effects are still unclear. In this study, arbuscular mycorrhizal (AM) fungi incubation and melatonin (MT) irrigation were applied to kiwifruit seedlings alone or in combination to investigate their effect on drought tolerance. The results revealed that AM had more effect on promoting root biomass, water use efficiency, and uptake of nitrogen, phosphorus and iron. While MT was more effective in promoting shoot biomass and antioxidant enzyme activities to remove reactive oxygen species accumulation. Moreover, MT supplementary significantly increased the AM colonization, spore density and hyphal length density in roots. Therefore, combined application of AM fungi and MT had additive effects on improvement biomass accumulation, increasing chlorophyll content, photosynthetic efficiency, catalase activity, and decreasing malondialdehyde accumulation under drought stress, thus promoting plant growth and alleviating the drought damage to plant. These results provide guidance for AM and MT combined application to improve abiotic resistance in plants.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress
    Liu, Chun-Yan
    Wang, Yu-Juan
    Wu, Qiang-Sheng
    Yang, Tian-Yuan
    Kuca, Kamil
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2020, 48 (04) : 1993 - 2005
  • [12] Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings
    Chen, Shuangchen
    Zhao, Hongjiao
    Zou, Chenchen
    Li, Yongsheng
    Chen, Yifei
    Wang, Zhonghong
    Jiang, Yan
    Liu, Airong
    Zhao, Puyan
    Wang, Mengmeng
    Ahammed, Golam J.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [13] The Influence of Compost and Arbuscular mycorrhizal Fungi on Sugarcane Growth and Nutrient Uptake
    Abreu, Gustavo Mattos
    Bobadilha, Gabrielly dos Santos
    Guirardi, Bruna Duque
    Abreu, Phillipe Mattos
    Oliveira, Naelmo de Souza
    Schiavo, Jolimar Antonio
    Mohammadi-Aragh, Maryam K.
    BIORESOURCES, 2021, 16 (02): : 3005 - 3016
  • [14] Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Cinnamomum migao and the Soil Nutrient Stoichiometry under Drought Stress and Recovery
    Xiao, Xuefeng
    Liao, Xiaofeng
    Yan, Qiuxiao
    Xie, Yuangui
    Chen, Jingzhong
    Liang, Gelin
    Chen, Meng
    Xiao, Shengyang
    Chen, Yuan
    Liu, Jiming
    JOURNAL OF FUNGI, 2023, 9 (03)
  • [15] Contribution of Arbuscular Mycorrhizal and Endophytic Fungi to Drought Tolerance in Araucaria araucana Seedlings
    Chavez, Daniel
    Rivas, Gustavo
    Machuca, Angela
    Santos, Cledir
    Deramond, Christian
    Aroca, Ricardo
    Cornejo, Pablo
    PLANTS-BASEL, 2023, 12 (11):
  • [16] Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance
    AlKaraki, GN
    AlRaddad, A
    MYCORRHIZA, 1997, 7 (02) : 83 - 88
  • [17] Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance
    G. N. Al-Karaki
    A. Al-Raddad
    Mycorrhiza, 1997, 7 : 83 - 88
  • [18] Nutrient Uptake and Distribution in Mycorrhizal Pistachio Seedlings under Drought Stress
    Bagheri, V.
    Shamshiri, M. H.
    Shirani, H.
    Roosta, H. R.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2012, 14 : 1591 - 1604
  • [19] Combined Application of Arbuscular Mycorrhizal Fungi and Exogenous Melatonin Alleviates Drought Stress and Improves Plant Growth in Tobacco Seedlings
    Liu, Ling
    Li, Dong
    Ma, Yilin
    Shen, Hongtao
    Zhao, Shimin
    Wang, Yanfang
    JOURNAL OF PLANT GROWTH REGULATION, 2021, 40 (03) : 1074 - 1087
  • [20] Contribution of arbuscular mycorrhizal fungi to growth and nutrient uptake by jujube and tamarind seedlings in a phosphate (P)-deficient soil
    Guissou, Tiby
    AFRICAN JOURNAL OF MICROBIOLOGY RESEARCH, 2009, 3 (05): : 297 - 304