Bias by censoring for competing events in survival analysis

被引:43
作者
Coemans, Maarten [1 ,2 ]
Verbeke, Geert [3 ,4 ]
Doehler, Bernd [5 ]
Suesal, Caner [5 ,6 ]
Naesens, Maarten [1 ,7 ]
机构
[1] Katholieke Univ Leuven, Dept Microbiol Immunol & Transplantat, Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr L Biostat, Leuven, Belgium
[3] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat I Biost, Hasselt, Belgium
[4] Katholieke Univ Leuven, Leuven, Belgium
[5] Heidelberg Univ, Inst Immunol, Heidelberg, Germany
[6] Koc Univ, Transplant Immunol Res Ctr Excellence, Istanbul, Turkey
[7] Univ Hosp Leuven, Dept Nephrol & Renal Transplantat, Leuven, Belgium
来源
BMJ-BRITISH MEDICAL JOURNAL | 2022年 / 378卷
关键词
RISKS METHODS; MODELS;
D O I
10.1136/bmj-2022-071349
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In survival analysis, competing events preclude the occurrence of the event of interest. The censoring of competing events is common in medical studies but leads to biased cumulative incidence estimators. Competing risks methods, such as the non-parametric Aalen-Johansen method or the semi -parametric Fine and Gray model, alleviate this bias and should be preferred above the Kaplan-Meier method and the Cox model, respectively. As an illustrative example, in a large European cohort, we report on the differences in the cumulative incidence estimates of graft failure after kidney transplantation, caused by censoring for recipient death.
引用
收藏
页数:8
相关论文
共 29 条
  • [21] Royston P, 2011, Flexible parametric survival analysis using Stata: beyond the Cox model
  • [22] Influence of Competing Risks on Estimates of Recurrence Risk and Breast Cancer-specific Mortality in Analyses of the Early Breast Cancer Trialists Collaborative Group
    Saleh, Ramy R.
    Nadler, Michelle B.
    Desnoyers, Alexandra
    Rodin, Danielle L.
    Abdel-Qadir, Husam
    Amir, Eitan
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] Relative rates not relative risks: addressing a widespread misinterpretation of hazard ratios
    Sutradhar, Rinku
    Austin, Peter C.
    [J]. ANNALS OF EPIDEMIOLOGY, 2018, 28 (01) : 54 - 57
  • [24] Validation of prediction models in the presence of competing risks: a guide through modern methods
    van Geloven, Nan
    Giardiello, Daniele
    Bonneville, Edouard F.
    Teece, Lucy
    Ramspek, Chava L.
    van Smeden, Maarten
    Snell, Kym I. E.
    van Calster, Ben
    Pohar-Perme, Maja
    Riley, Richard D.
    Putter, Hein
    Steyerberg, Ewout
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2022, 377
  • [25] Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals
    van Walraven, Carl
    McAlister, Finlay A.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 69 : 170 - 173
  • [26] Competing risks: you only die once
    Warnock, David G.
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2016, 31 (07) : 1033 - 1035
  • [27] Competing risks analyses: objectives and approaches
    Wolbers, Marcel
    Koller, Michael T.
    Stel, Vianda S.
    Schaer, Beat
    Jager, Kitty J.
    Leffondre, Karen
    Heinze, Georg
    [J]. EUROPEAN HEART JOURNAL, 2014, 35 (42) : 2936 - 2941
  • [28] Prognostic Models With Competing Risks Methods and Application to Coronary Risk Prediction
    Wolbers, Marcel
    Koller, Michael T.
    Witteman, Jacqueline C. M.
    Steyerberg, Ewout W.
    [J]. EPIDEMIOLOGY, 2009, 20 (04) : 555 - 561
  • [29] Interpreting and comparing risks in the presence of competing events
    Wolkewitz, Martin
    Cooper, Ben S.
    Bonten, Marc J. M.
    Barnett, Adrian G.
    Schumacher, Martin
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2014, 349