Bias by censoring for competing events in survival analysis

被引:43
作者
Coemans, Maarten [1 ,2 ]
Verbeke, Geert [3 ,4 ]
Doehler, Bernd [5 ]
Suesal, Caner [5 ,6 ]
Naesens, Maarten [1 ,7 ]
机构
[1] Katholieke Univ Leuven, Dept Microbiol Immunol & Transplantat, Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr L Biostat, Leuven, Belgium
[3] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat I Biost, Hasselt, Belgium
[4] Katholieke Univ Leuven, Leuven, Belgium
[5] Heidelberg Univ, Inst Immunol, Heidelberg, Germany
[6] Koc Univ, Transplant Immunol Res Ctr Excellence, Istanbul, Turkey
[7] Univ Hosp Leuven, Dept Nephrol & Renal Transplantat, Leuven, Belgium
来源
BMJ-BRITISH MEDICAL JOURNAL | 2022年 / 378卷
关键词
RISKS METHODS; MODELS;
D O I
10.1136/bmj-2022-071349
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In survival analysis, competing events preclude the occurrence of the event of interest. The censoring of competing events is common in medical studies but leads to biased cumulative incidence estimators. Competing risks methods, such as the non-parametric Aalen-Johansen method or the semi -parametric Fine and Gray model, alleviate this bias and should be preferred above the Kaplan-Meier method and the Cox model, respectively. As an illustrative example, in a large European cohort, we report on the differences in the cumulative incidence estimates of graft failure after kidney transplantation, caused by censoring for recipient death.
引用
收藏
页数:8
相关论文
共 29 条
  • [1] AALEN OO, 1978, SCAND J STAT, V5, P141
  • [2] Importance of Considering Competing Risks in Time-to-Event Analyses Application to Stroke Risk in a Retrospective Cohort Study of Elderly Patients With Atrial Fibrillation
    Abdel-Qadir, Husam
    Fang, Jiming
    Lee, Douglas S.
    Tu, Jack V.
    Amir, Eitan
    Austin, Peter C.
    Anderson, Geoffrey M.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2018, 11 (07):
  • [3] Fine-Gray subdistribution hazard models to simultaneously estimate the absolute risk of different event types: Cumulative total failure probability may exceed 1
    Austin, Peter C.
    Steyerberg, Ewout W.
    Putter, Hein
    [J]. STATISTICS IN MEDICINE, 2021, 40 (19) : 4200 - 4212
  • [4] Introduction to the Analysis of Survival Data in the Presence of Competing Risks
    Austin, Peter C.
    Lee, Douglas S.
    Fine, Jason P.
    [J]. CIRCULATION, 2016, 133 (06) : 601 - 609
  • [5] Breslow N.E., 1972, J R STAT SOC B, V34, P202, DOI [10.1111/j.2517-6161.1972.tb00900.x, DOI 10.1111/J.2517-6161.1972.TB00900.X]
  • [6] Hidden Imputations and the Kaplan-Meier Estimator
    Cole, Stephen R.
    Edwards, Jessie K.
    Naimi, Ashley, I
    Munoz, Alvaro
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2020, 189 (11) : 1408 - 1411
  • [7] COX DR, 1972, J R STAT SOC B, V34, P187
  • [8] Competing Risk Analysis in Renal Allograft Survival: A New Perspective to an Old Problem
    El Ters, Mireille
    Smith, Byron H.
    Cosio, Fernando G.
    Kremers, Walter K.
    [J]. TRANSPLANTATION, 2021, 105 (03) : 668 - 676
  • [9] Geskus R. B., 2021, Data Analysis With Competing Risks and Intermediate States, DOI [10.1201/b18695, DOI 10.1201/B18695]
  • [10] Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified
    Grambauer, Nadine
    Schumacher, Martin
    Beyersmann, Jan
    [J]. STATISTICS IN MEDICINE, 2010, 29 (7-8) : 875 - 884