Modules and Morita theorem for operads

被引:51
作者
Kapranov, M [1 ]
Manin, Y
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
D O I
10.1353/ajm.2001.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associative rings A, B are called Morita equivalent when the categories of left modules over them are equivalent. We call two classical linear operads P, Q Morita equivalent if the categories of algebras over them are equivalent. We transport a part of Morita theory to the operadic context by studying modules over operads. As an application of this philosophy, we consider an operadic version of the sheaf of linear differential operators on a (super)manifold M and give a comparison theorem between algebras over this sheaf on M and M-red.
引用
收藏
页码:811 / 838
页数:28
相关论文
共 29 条
[1]  
ADAMS JF, 1978, INFINITE LOOP SPACES
[2]  
[Anonymous], LECT NOTES MATH
[3]  
Baues H.-J., 1997, CONT MATH, V202, P137, DOI DOI 10.1090/CONM/202/02597
[4]  
Borel Bo] A., 1987, Perspectives in Mathematics, V2
[5]  
Deligne P., 1990, PROGR MATH, V87, P111
[6]   Lie theory of formal groups over an operad [J].
Fresse, B .
JOURNAL OF ALGEBRA, 1998, 202 (02) :455-511
[7]   COHOMOLOGY STRUCTURE OF AN ASSOCIATIVE RING [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1963, 78 (02) :267-&
[8]  
GETZLER E, 1995, CONF PROC LECT NOT G, V4, P167
[9]   KOSZUL DUALITY FOR OPERADS [J].
GINZBURG, V ;
KAPRANOV, M .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) :203-272