Basin entropy: a new tool to analyze uncertainty in dynamical systems

被引:141
作者
Daza, Alvar [1 ]
Wagemakers, Alexandre [1 ]
Georgeot, Bertrand [2 ]
Guery-Odelin, David [3 ]
Sanjuan, Miguel A. F. [1 ]
机构
[1] Univ Rey Juan Carlos, Nonlinear Dynam Chaos & Complex Syst Grp, Dept Fis, Tulipan S-N, Madrid, Spain
[2] Univ Toulouse, Lab Phys Theor, IRSAMC, CNRS,UPS, Toulouse, France
[3] Univ Toulouse, Lab Collis, IRSAMC, Agregats,React,CNRS UPS, Toulouse, France
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
FRACTAL BASINS; ATTRACTION; BEHAVIOR;
D O I
10.1038/srep31416
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In nonlinear dynamics, basins of attraction link a given set of initial conditions to its corresponding final states. This notion appears in a broad range of applications where several outcomes are possible, which is a common situation in neuroscience, economy, astronomy, ecology and many other disciplines. Depending on the nature of the basins, prediction can be difficult even in systems that evolve under deterministic rules. From this respect, a proper classification of this unpredictability is clearly required. To address this issue, we introduce the basin entropy, a measure to quantify this uncertainty. Its application is illustrated with several paradigmatic examples that allow us to identify the ingredients that hinder the prediction of the final state. The basin entropy provides an efficient method to probe the behavior of a system when different parameters are varied. Additionally, we provide a sufficient condition for the existence of fractal basin boundaries: when the basin entropy of the boundaries is larger than log2, the basin is fractal.
引用
收藏
页数:10
相关论文
共 31 条
  • [1] TOPOLOGICAL ENTROPY
    ADLER, RL
    KONHEIM, AG
    MCANDREW, MH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) : 309 - &
  • [2] Wada basins and chaotic invariant sets in the Henon-Heiles system -: art. no. 066208
    Aguirre, J
    Vallejo, JC
    Sanjuán, MAF
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 11
  • [3] Unpredictable behavior in the Duffing oscillator:: Wada basins
    Aguirre, J
    Sanjuán, MAF
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 171 (1-2) : 41 - 51
  • [4] Fractal structures in nonlinear dynamics
    Aguirre, Jacobo
    Viana, Ricardo L.
    Sanjuan, Miguel A. F.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 333 - 386
  • [5] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [6] Alligood K. T., 1996, CHAOS
  • [7] Visualizing Basins of Attraction for Different Minimization Algorithms
    Asenjo, Daniel
    Stevenson, Jacob D.
    Wales, David J.
    Frenkel, Daan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (42) : 12717 - 12723
  • [8] TO ESCAPE OR NOT TO ESCAPE, THAT IS THE QUESTION - PERTURBING THE HENON-HEILES HAMILTONIAN
    Blesa, Fernando
    Seoane, Jesus M.
    Barrio, Roberto
    Sanjuan, Miguel A. F.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [9] Rational route to randomness
    Brock, WA
    Hommes, CH
    [J]. ECONOMETRICA, 1997, 65 (05) : 1059 - 1095
  • [10] Testing for Basins of Wada
    Daza, Alvar
    Wagemakers, Alexandre
    Sanjuan, Miguel A. F.
    Yorke, James A.
    [J]. SCIENTIFIC REPORTS, 2015, 5