Current transport mechanisms of InGaN metal-insulator-semiconductor photodetectors

被引:18
|
作者
Shao, Z. G. [1 ]
Chen, D. J. [1 ]
Liu, B. [1 ]
Lu, H. [1 ]
Xie, Z. L. [1 ]
Zhang, R. [1 ]
Zheng, Y. D. [1 ]
机构
[1] Nanjing Univ, Key Lab Adv Photon & Elect Mat, Sch Elect Sci & Engn, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2011年 / 29卷 / 05期
关键词
Atomic layer deposition - Semiconductor alloys - Semiconductor insulator boundaries - Gate dielectrics - Photons - Aluminum oxide - III-V semiconductors - Dielectric materials - Interface states - Metals - MIS devices - Alumina - Plasma CVD - Plasma enhanced chemical vapor deposition;
D O I
10.1116/1.3622298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors report on InGaN metal-insulator-semiconductor (MIS) photodetectors with two different insulating layers of Si3N4 and Al2O3 deposited via plasma-enhanced chemical vapor deposition and atomic layer deposition, respectively. The photoresponse spectra show that the metal-Al2O3-InGaN photodetector exhibits an approximately threefold higher photoelectric responsivity and a larger spectral rejection ratio as compared to the metal-Si3N4-InGaN photodetector at a 1 V reverse bias. The current transport mechanisms in MIS photodetectors were investigated in order to determine the difference in photoresponse. The results show that the space charge limited current is a dominant leakage conduction mechanism in the InGaN MIS photodetectors, but this mechanism is mediated by the exponential trap distribution in the metal-Si3N4-InGaN photodetector. This indicates a higher density of trap states in the Si3N4 bulk. A bidirectional Fowler-Nordheim tunneling effect was observed in the metal-Si3N4-InGaN photodetector, which indicates high trap states in the Si3N4 bulk and the Si3N4-InGaN interface. These traps increase the probability of photogenerated carrier recombination in the bulk of the dielectrics and at the interface of dielectric-InGaN, and hence the photoelectric responsivity is lower. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3622298]
引用
收藏
页数:3
相关论文
共 50 条
  • [41] GaN-Based metal-insulator-semiconductor ultraviolet photodetectors with HfO2 insulators
    Department of Electronic Engineering, Cheng Shiu University, Kaohsiung 833, Taiwan
    Jpn. J. Appl. Phys., 1600, 8 PART 2
  • [42] GaN-Based Metal-Insulator-Semiconductor Ultraviolet Photodetectors with HfO2 Insulators
    Chen, Chin-Hsiang
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [43] Digital communication using Ge metal-insulator-semiconductor light-emitting diodes and photodetectors
    Cheng, T.-H.
    Liao, M.H.
    Yeh, Lingyen
    Lee, T.-L.
    Liang, M.-S.
    Liu, C.W.
    Journal of Applied Physics, 2008, 103 (01):
  • [44] The effect of external actions on coherent electro transport in the metal-insulator-semiconductor structure
    Abramov, II
    Danilyuk, AL
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (05): : 55 - 59
  • [45] Current conduction mechanisms and breakdown fields of AlxTiyO/n-GaAs(001) metal-insulator-semiconductor structures
    Ui, Toshimasa
    Kudo, Masahiro
    Suzuki, Toshi-kazu
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 11, 2013, 10 (11): : 1417 - 1420
  • [46] Characterization of polymeric metal-insulator-semiconductor diodes
    Grecu, S
    Bronner, M
    Opitz, A
    Brütting, W
    SYNTHETIC METALS, 2004, 146 (03) : 359 - 363
  • [47] A Dopingless FET With Metal-Insulator-Semiconductor Contacts
    Kao, Kuo-Hsing
    Chen, Liang-Yu
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (01) : 5 - 8
  • [48] An avalanche photodiode with metal-insulator-semiconductor properties
    Z. Ya. Sadygov
    T. M. Burbaev
    V. A. Kurbatov
    Semiconductors, 2001, 35 : 117 - 121
  • [49] CAPACITANCE OF A METAL-INSULATOR-SEMICONDUCTOR STRUCTURE.
    KONSTANTINOV, O.V.
    MEZRIN, O.A.
    1600, (V 16):
  • [50] An avalanche photodiode with metal-insulator-semiconductor properties
    Sadygov, ZY
    Burbaev, TM
    Kurbatov, VA
    SEMICONDUCTORS, 2001, 35 (01) : 117 - 121