Machine learning to detect signatures of disease in liquid biopsies - a user's guide

被引:100
作者
Ko, Jina [1 ]
Baldassano, Steven N. [1 ]
Loh, Po-Ling [2 ]
Kording, Konrad [1 ,3 ]
Litt, Brian [1 ,4 ]
Issadore, David [1 ,5 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI USA
[3] Univ Penn, Dept Neurosci, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
CIRCULATING TUMOR-CELLS; PERIPHERAL-BLOOD; CANCER; EXOSOMES; CLASSIFICATION; HETEROGENEITY; DIAGNOSTICS; BIOMARKERS; ACCURACY; DNA;
D O I
10.1039/c7lc00955k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
New technologies that measure sparse molecular biomarkers from easily accessible bodily fluids (e.g. blood, urine, and saliva) are revolutionizing disease diagnostics and precision medicine. Microchip devices can measure more disease biomarkers with better sensitivity and specificity each year, but clinical interpretation of these biomarkers remains a challenge. Single biomarkers in 'liquid biopsy' often cannot accurately predict the state of a disease due to heterogeneity in phenotype and disease expression across individuals. To address this challenge, investigators are combining multiplexed measurements of different biomarkers that together define robust signatures for specific disease states. Machine learning is a useful tool to automatically discover and detect these signatures, especially as new technologies output increasing quantities of molecular data. In this paper, we review the state of the field of machine learning applied to molecular diagnostics and provide practical guidance to use this tool effectively and to avoid common pitfalls.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
  • [21] A Deep Learning Method to Detect Parkinson’s Disease from MRI Slices
    Çağatay Berke Erdaş
    Emre Sümer
    SN Computer Science, 2022, 3 (2)
  • [22] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [23] A Parallel Machine Learning Framework for Detecting Alzheimer's Disease
    Knox, Sean A.
    Chen, Tianhua
    Su, Pan
    Antoniou, Grigoris
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 423 - 432
  • [24] Improving Parkinson's Disease Diagnosis with Machine Learning Methods
    Celik, Enes
    Omurca, Sevinc Ilhan
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [25] Machine learning for the assessment of Alzheimer's disease through DTI
    Lella, Eufemia
    Amoroso, Nicola
    Bellotti, Roberto
    Diacono, Domenico
    La Rocca, Marianna
    Maggipinto, Tommaso
    Monaco, Alfonso
    Tangaro, Sabina
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
  • [26] Detection of Alzheimer's disease by displacement field and machine learning
    Zhang, Yudong
    Wang, Shuihua
    PEERJ, 2015, 3
  • [27] An interpretable machine learning model for diagnosis of Alzheimer's disease
    Das, Diptesh
    Ito, Junichi
    Kadowaki, Tadashi
    Tsuda, Koji
    PEERJ, 2019, 7
  • [28] Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature
    Mei, Jie
    Desrosiers, Christian
    Frasnelli, Johannes
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [29] A Machine Learning Approach to Parkinson's Disease Blood Transcriptomics
    Pantaleo, Ester
    Monaco, Alfonso
    Amoroso, Nicola
    Lombardi, Angela
    Bellantuono, Loredana
    Urso, Daniele
    Lo Giudice, Claudio
    Picardi, Ernesto
    Tafuri, Benedetta
    Nigro, Salvatore
    Pesole, Graziano
    Tangaro, Sabina
    Logroscino, Giancarlo
    Bellotti, Roberto
    GENES, 2022, 13 (05)
  • [30] Alzheimer's Disease Diagnosis Using Machine Learning: A Survey
    Dara, Omer Asghar
    Lopez-Guede, Jose Manuel
    Raheem, Hasan Issa
    Rahebi, Javad
    Zulueta, Ekaitz
    Fernandez-Gamiz, Unai
    APPLIED SCIENCES-BASEL, 2023, 13 (14):