Machine learning to detect signatures of disease in liquid biopsies - a user's guide

被引:99
|
作者
Ko, Jina [1 ]
Baldassano, Steven N. [1 ]
Loh, Po-Ling [2 ]
Kording, Konrad [1 ,3 ]
Litt, Brian [1 ,4 ]
Issadore, David [1 ,5 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI USA
[3] Univ Penn, Dept Neurosci, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
CIRCULATING TUMOR-CELLS; PERIPHERAL-BLOOD; CANCER; EXOSOMES; CLASSIFICATION; HETEROGENEITY; DIAGNOSTICS; BIOMARKERS; ACCURACY; DNA;
D O I
10.1039/c7lc00955k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
New technologies that measure sparse molecular biomarkers from easily accessible bodily fluids (e.g. blood, urine, and saliva) are revolutionizing disease diagnostics and precision medicine. Microchip devices can measure more disease biomarkers with better sensitivity and specificity each year, but clinical interpretation of these biomarkers remains a challenge. Single biomarkers in 'liquid biopsy' often cannot accurately predict the state of a disease due to heterogeneity in phenotype and disease expression across individuals. To address this challenge, investigators are combining multiplexed measurements of different biomarkers that together define robust signatures for specific disease states. Machine learning is a useful tool to automatically discover and detect these signatures, especially as new technologies output increasing quantities of molecular data. In this paper, we review the state of the field of machine learning applied to molecular diagnostics and provide practical guidance to use this tool effectively and to avoid common pitfalls.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
  • [1] A User?s Guide to Machine Learning for Polymeric Biomaterials
    Meyer, Travis A.
    Ramirez, Cesar
    Tamasi, Matthew J.
    Gormley, Adam J.
    ACS POLYMERS AU, 2023, 3 (02): : 141 - 157
  • [2] Evaluating the Machine Learning Literature: A Primer and User's Guide for Psychiatrists
    Grzenda, Adrienne
    Kraguljac, Nina, V
    McDonald, William M.
    Nemeroff, Charles
    Torous, John
    Alpert, Jonathan E.
    Rodriguez, Carolyn, I
    Widge, Alik S.
    AMERICAN JOURNAL OF PSYCHIATRY, 2021, 178 (08): : 715 - 729
  • [3] A cardiologist’s guide to machine learning in cardiovascular disease prognosis prediction
    Karl-Patrik Kresoja
    Matthias Unterhuber
    Rolf Wachter
    Holger Thiele
    Philipp Lurz
    Basic Research in Cardiology, 118
  • [4] A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction
    Kresoja, Karl-Patrik
    Unterhuber, Matthias
    Wachter, Rolf
    Thiele, Holger
    Lurz, Philipp
    BASIC RESEARCH IN CARDIOLOGY, 2023, 118 (01)
  • [5] Looking for Alzheimer's Disease morphometric signatures using machine learning techniques
    Andres Donnelly-Kehoe, Patricio
    Orlando Pascariello, Guido
    Carlos Gomez, Juan
    JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 : 24 - 34
  • [6] A Machine Learning Approach to Detect Parkinson's Disease by Looking at Gait Alterations
    Tirnauca, Cristina
    Stan, Diana
    Meissner, Johannes Mario
    Salas-Gomez, Diana
    Fernandez-Gorgojo, Mario
    Infante, Jon
    MATHEMATICS, 2022, 10 (19)
  • [7] Hybrid Machine Learning Classifier and Ensemble Techniques to Detect Parkinson’s Disease Patients
    Yadav S.
    Singh M.K.
    SN Computer Science, 2021, 2 (3)
  • [8] Zap Q-Learning - A User's Guide
    Devraj, Adithya M.
    Busic, Ana
    Meyn, Sean
    2019 FIFTH INDIAN CONTROL CONFERENCE (ICC), 2019, : 10 - 15
  • [9] Classification Confidence in Exploratory Learning: A User's Guide
    Salamon, Peter
    Salamon, David
    Cantu, V. Adrian
    An, Michelle
    Perry, Tyler
    Edwards, Robert A.
    Segall, Anca M.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (03): : 803 - 829
  • [10] Platelet-Based Liquid Biopsies through the Lens of Machine Learning
    Cygert, Sebastian
    Pastuszak, Krzysztof
    Gorski, Franciszek
    Sieczczynski, Michal
    Juszczyk, Piotr
    Rutkowski, Antoni
    Lewalski, Sebastian
    Rozanski, Robert
    Jopek, Maksym Albin
    Jassem, Jacek
    Czyzewski, Andrzej
    Wurdinger, Thomas
    Best, Myron G.
    Zaczek, Anna J.
    Supernat, Anna
    CANCERS, 2023, 15 (08)