Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection

被引:261
|
作者
Chen, Hao [1 ]
Li, Youfu [1 ]
Su, Dan [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China
关键词
RGB-D; Convolutional neural networks; Multi-path; Saliency detection; DETECTION MODEL; VIDEO;
D O I
10.1016/j.patcog.2018.08.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Paired RGB and depth images are becoming popular multi-modal data adopted in computer vision tasks. Traditional methods based on Convolutional Neural Networks (CNNs) typically fuse RGB and depth by combining their deep representations in a late stage with only one path, which can be ambiguous and insufficient for fusing large amounts of cross-modal data. To address this issue, we propose a novel multi-scale multi-path fusion network with cross-modal interactions (MMCI), in which the traditional two-stream fusion architecture with single fusion path is advanced by diversifying the fusion path to a global reasoning one and another local capturing one and meanwhile introducing cross-modal interactions in multiple layers. Compared to traditional two-stream architectures, the MMCI net is able to supply more adaptive and flexible fusion flows, thus easing the optimization and enabling sufficient and efficient fusion. Concurrently, the MMCI net is equipped with multi-scale perception ability (i.e., simultaneously global and local contextual reasoning). We take RGB-D saliency detection as an example task. Extensive experiments on three benchmark datasets show the improvement of the proposed MMCI net over other state-of-the-art methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 385
页数:10
相关论文
共 50 条
  • [1] Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
    Wu, Jiajia
    Han, Guangliang
    Wang, Haining
    Yang, Hang
    Li, Qingqing
    Liu, Dongxu
    Ye, Fangjian
    Liu, Peixun
    IEEE ACCESS, 2021, 9 : 150608 - 150622
  • [2] M 2RNet: Multi-modal and multi-scale refined network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    PATTERN RECOGNITION, 2023, 135
  • [3] Multi-level cross-modal interaction network for RGB-D salient object detection
    Huang, Zhou
    Chen, Huai-Xin
    Zhou, Tao
    Yang, Yun-Zhi
    Liu, Bi-Yuan
    NEUROCOMPUTING, 2021, 452 : 200 - 211
  • [4] RGB-D Saliency Detection Based on Attention Mechanism and Multi-Scale Cross-Modal Fusion
    Cui Z.
    Feng Z.
    Wang F.
    Liu Q.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (06): : 893 - 902
  • [5] Cross-modal hierarchical interaction network for RGB-D salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhu, Huihui
    Zhang, Cong
    Xiang, Tian -Zhu
    PATTERN RECOGNITION, 2023, 136
  • [6] Joint Cross-Modal and Unimodal Features for RGB-D Salient Object Detection
    Huang, Nianchang
    Liu, Yi
    Zhang, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2428 - 2441
  • [7] Cross-Stage Multi-Scale Interaction Network for RGB-D Salient Object Detection
    Yi, Kang
    Zhu, Jinchao
    Guo, Fu
    Xu, Jing
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2402 - 2406
  • [8] Multi-modal deep feature learning for RGB-D object detection
    Xu, Xiangyang
    Li, Yuncheng
    Wu, Gangshan
    Luo, Jiebo
    PATTERN RECOGNITION, 2017, 72 : 300 - 313
  • [9] RGB-D Salient Object Detection via Feature Fusion and Multi-scale Enhancement
    Wu, Peiliang
    Duan, Liangliang
    Kong, Lingfu
    COMPUTER VISION, CCCV 2015, PT II, 2015, 547 : 359 - 368
  • [10] RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion
    Peng, Yanbin
    Zhai, Zhinian
    Feng, Mingkun
    IEEE ACCESS, 2024, 12 : 45134 - 45146