The Navier-Stokes-Vlasov-Fokker-Planck System in Bounded Domains

被引:7
|
作者
Li, Hailiang [1 ,2 ]
Liu, Shuangqian [3 ]
Yang, Tong [4 ]
机构
[1] Capital Normal Univ, Sch Math, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Vlasov-Pokker-Plack system; Maxwell boundary condition; Specular reflection boundary condition; L-2; -; L-10/3; estimate; GLOBAL WEAK SOLUTIONS; ASYMPTOTIC ANALYSIS; CLASSICAL-SOLUTIONS; HYDRODYNAMIC LIMIT; BOLTZMANN-EQUATION; KINETIC-MODEL; STABILITY; EXISTENCE; PARTICLES;
D O I
10.1007/s10955-022-02886-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the initial boundary value problem of the Vlasov-Fokker-Planck equation coupled with either the incompressible or compressible Navier-Stokes equations in a bounded domain. The global existence of unique strong solution and its exponential convergence rate to the equilibrium state are proved under the Maxwell boundary condition for the incompressible case and specular reflection boundary condition for the compressible case, respectively. For the compressible model, to overcome the lack of regularity due to the coupling with the kinetic equation in a bounded domain, an essential L-10/3 estimate is analyzed so that the a priori estimate can be closed by applying the S-L(P) theory developed by Guo et al. for kinetic models, [Arch Ration Mech Anal 236(3): 1389-1454 (2020)].
引用
收藏
页数:32
相关论文
共 50 条
  • [1] The Navier–Stokes–Vlasov–Fokker–Planck System in Bounded Domains
    Hailiang Li
    Shuangqian Liu
    Tong Yang
    Journal of Statistical Physics, 2022, 186
  • [2] On the α-Navier-Stokes-Vlasov and the α-Navier-Stokes-Vlasov-Fokker-Planck equations
    Pinheiro, Cristyan
    Planas, Gabriela
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [3] THE NAVIER-STOKES-VLASOV-FOKKER-PLANCK SYSTEM NEAR EQUILIBRIUM
    Goudon, Thierry
    He, Lingbing
    Moussa, Ayman
    Zhang, Ping
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) : 2177 - 2202
  • [4] On the well-posedness of a stochastic Navier-Stokes-Vlasov-Fokker-Planck system
    Chuyeh Nfor, Evaristus
    Woukeng, Jean Louis
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [5] The Navier-Stokes-Vlasov-Fokker-Planck System as a Scaling Limit of Particles in a Fluid
    Flandoli, Franco
    Leocata, Marta
    Ricci, Cristiano
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (02)
  • [6] Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2431 - 2465
  • [7] Energy estimates and hypocoercivity analysis for a multi-phase Navier-Stokes-Vlasov-Fokker-Planck system with uncertainty
    Jin, Shi
    Lin, Yiwen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 110 - 145
  • [8] Global weak solutions to the Cauchy problem of compressible Navier-Stokes-Vlasov-Fokker-Planck equations
    Wang, Weiwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (03) : 508 - 526
  • [9] Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain
    Choi, Young-Pil
    Jung, Jinwook
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (11): : 2213 - 2295
  • [10] Global solutions and exponential time decay rates to the Navier-Stokes-Vlasov-Fokker-Planck system in low regularity space
    Tan, Lihua
    Fan, Yingzhe
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)