Joint Deep Modeling of Users and Items Using Reviews for Recommendation

被引:724
作者
Zheng, Lei [1 ]
Noroozi, Vahid [1 ]
Yu, Philip S. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
来源
WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING | 2017年
关键词
Recommender Systems; Deep Learning; Convolutional Neural Networks; Rating Prediction;
D O I
10.1145/3018661.3018665
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 38 条
  • [1] [Anonymous], 2016, ARXIV
  • [2] [Anonymous], 2014, C EMPIRICAL METHODS
  • [3] [Anonymous], 2013, P 7 ACM C RECOMMENDE
  • [4] [Anonymous], 2007, P 24 INT C MACHINE L
  • [5] [Anonymous], 2015, P 9 ACM C RECOMMENDE, DOI [10.1145/2792838.2800192, DOI 10.1145/2792838.2800192]
  • [6] [Anonymous], 2009, P 1 INT CIKM WORKSHO
  • [7] Baccianella S, 2009, LECT NOTES COMPUT SC, V5478, P461, DOI 10.1007/978-3-642-00958-7_41
  • [8] Bao Y, 2014, AAAI CONF ARTIF INTE, P2
  • [9] Bengio Y, 2006, STUD FUZZ SOFT COMP, V194, P137
  • [10] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022