STOCHASTIC KORTEWEG-DE VRIES EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTION

被引:2
作者
Wang, Guolian [1 ]
Guo, Boling [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Korteweg-de Vries equation; fractional Brownian motion; Hurst parameter; stochastic convolution; bilinear estimate; EVOLUTION-EQUATIONS; NOISE; SOLITONS;
D O I
10.3934/dcds.2015.35.5255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the Korteweg-de Vries equation driven by a cylindrical fractional Brownian motion (fBm) in this paper. With Hurst parameter H >= 7/16 of the fBm, we obtain the local existence results with initial value in classical Sobolev spaces H-s with s >= -9/16. Furthermore, we give the relation between the Hurst parameter H and the index s to the Sobolev spaces H-s, which finds out the regularity between the driven term fBm and the initial value for the stochastic Korteweg-de Vries equation.
引用
收藏
页码:5255 / 5272
页数:18
相关论文
共 30 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
Alos E., 2003, STOCH STOCH REP, V75, P129, DOI DOI 10.1080/1045112031000078917
[3]  
Biagini F, 2008, PROBAB APPL SER, P1
[4]  
Bourgain J., 1993, Geom. Funct. Anal., P107
[5]   The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise [J].
Caithamer, P .
STOCHASTICS AND DYNAMICS, 2005, 5 (01) :45-64
[6]   PROPAGATION OF ION-ACOUSTIC SOLITONS IN A NON-QUIESCENT PLASMA [J].
CHANG, HY ;
LIEN, C ;
SUKARTO, S ;
RAYCHAUDHURI, S ;
HILL, J ;
TSIKIS, EK ;
LONNGREN, KE .
PLASMA PHYSICS AND CONTROLLED FUSION, 1986, 28 (04) :675-681
[7]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[8]   Periodic solutions of the Korteweg-de Vries equation driven by white noise [J].
De Bouard, A ;
Debussche, A ;
Tsutsumi, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :815-855
[9]   White noise driven Korteweg-de Vries equation [J].
de Bouard, A ;
Debussche, A ;
Tsutsumi, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) :532-558
[10]  
Duncan T.E., 2002, Stoch. Dyn, V2, P225, DOI DOI 10.1142/S0219493702000340