DRLLA: Deep Reinforcement Learning for Link Adaptation

被引:4
|
作者
Geiser, Florian [1 ,2 ]
Wessel, Daniel [1 ]
Hummert, Matthias [3 ]
Weber, Andreas [4 ]
Wuebben, Dirk [3 ]
Dekorsy, Armin [3 ]
Viseras, Alberto [1 ]
机构
[1] Motius, D-80807 Munich, Germany
[2] Tech Univ Munich, Elect & Comp Engn, D-80333 Munich, Germany
[3] Univ Bremen, Dept Commun Engn, D-28359 Bremen, Germany
[4] Nokia Bell Labs, D-81541 Munich, Germany
来源
TELECOM | 2022年 / 3卷 / 04期
关键词
machine learning; mobile communication; reinforcement learning; link adaptation; channel observation;
D O I
10.3390/telecom3040037
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Link adaptation (LA) matches transmission parameters to conditions on the radio link, and therefore plays a major role in telecommunications. Improving LA is within the requirements for next-generation mobile telecommunication systems, and by refining link adaptation, a higher channel efficiency can be achieved (i.e., an increased data rate thanks to lower required bandwidth). Furthermore, by replacing traditional LA algorithms, radio transmission systems can better adapt themselves to a dynamic environment. There are several drawbacks to current state-of-the-art approaches, including predefined and static decision boundaries or relying on a single, low-dimensional metric. Nowadays, a broadly used approach to handle a variety of related input variables is a neural network (NN). NNs are able to make use of multiple inputs, and when combined with reinforcement learning (RL), the so-called deep reinforcement learning (DRL) approach emerges. Using DRL, more complex parameter relationships can be considered in order to recommend the modulation and coding scheme (MCS) used in LA. Hence, this work examines the potential of DRL and includes experiments on different channels. The main contribution of this work lies in using DRL algorithms for LA, optimized for throughput based on a subcarrier observation matrix and a packet success rate feedback system. We apply Natural Actor-Critic (NAC) and Proximal Policy Optimization (PPO) algorithms on simulated channels with a subsequent feasibility study on a prerecorded real-world channel. Empirical results produced by experiments on the examined channels hint that Deep Reinforcement Learning for Link Adaptation (DRLLA) offers good performance indicated by a promising data rate on the additive white Gaussian noise (AWGN) channel, the non-line-of-sight (NLOS) channel, and a prerecorded real-world channel. No matter the channel impairment, the agent is able to respond to changing signal-to-interference-plus-noise-ratio (SINR) levels, as exhibited by expected changes in the effective data rate.
引用
收藏
页码:692 / 705
页数:14
相关论文
共 50 条
  • [21] Deep reinforcement learning for conservation decisions
    Lapeyrolerie, Marcus
    Chapman, Melissa S.
    Norman, Kari E. A.
    Boettiger, Carl
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (11): : 2649 - 2662
  • [22] Deep Reinforcement Learning for Single-Shot Diagnosis and Adaptation in Damaged Robots
    Verma, Shresth
    Nair, Haritha S.
    Agarwal, Gaurav
    Dhar, Joydip
    Shukla, Anupam
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 82 - 89
  • [23] Domain adaptation in reinforcement learning: a comprehensive and systematic study
    Farhadi, Amirfarhad
    Mirzarezaee, Mitra
    Sharifi, Arash
    Teshnehlab, Mohammad
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (11) : 1446 - 1465
  • [24] Machine learning for efficient link adaptation strategy in VANETs
    Feukeu E.A.
    Snyman L.W.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 279 - 307
  • [25] Multiple Target Prediction for Deep Reinforcement Learning
    Chien, Jen-Tzung
    Hung, Po-Yen
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1611 - 1616
  • [26] Deep Reinforcement Learning for Semiconductor Production Scheduling
    Waschneck, Bernd
    Reichstaller, Andre
    Belzner, Lenz
    Altenmueller, Thomas
    Bauernhansl, Thomas
    Knapp, Alexander
    Kyek, Andreas
    2018 29TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2018, : 301 - 306
  • [27] Deep reinforcement learning for inventory control: A roadmap
    Boute, Robert N.
    Gijsbrechts, Joren
    van Jaarsveld, Willem
    Vanvuchelen, Nathalie
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 298 (02) : 401 - 412
  • [28] Hindsight Reward Shaping in Deep Reinforcement Learning
    de Villiers, Byron
    Sabatta, Deon
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 653 - 659
  • [29] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [30] Deep Decentralized Reinforcement Learning for Cooperative Control
    Koepf, Florian
    Tesfazgi, Samuel
    Flad, Michael
    Hohmann, Soeren
    IFAC PAPERSONLINE, 2020, 53 (02): : 1555 - 1562