Estimation of Directed Acyclic Graphs Through Two-Stage Adaptive Lasso for Gene Network Inference

被引:38
作者
Han, Sung Won [1 ]
Chen, Gong [2 ]
Cheon, Myun-Seok [3 ]
Zhong, Hua [4 ]
机构
[1] Korea Univ, Sch Ind Management Engn, Seoul, South Korea
[2] Roche Innovat Ctr New York, Pharmaceut Sci Pharma Early Res & Dev, New York, NY USA
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] NYU, Dept Populat Hlth, 550 1St Ave, New York, NY 10016 USA
关键词
Directed acyclic graphs; Lasso estimation; Neighborhood selection; Probabilistic graphical model; Structure equation model; LEARNING BAYESIAN NETWORKS; VARIABLE SELECTION; REGULATORY NETWORKS; PENALIZED LIKELIHOOD; REGRESSION; MODEL; EXPRESSION; COMBINATION;
D O I
10.1080/01621459.2016.1142880
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Graphical models are a popular approach to find dependence and conditional independence relationships between gene expressions. Directed acyclic graphs (DAGs) are a special class of directed, graphical models, where all the edges are directed edges and contain. no directed cycles. The DAGs are well known models for discovering causal relationships between genes in gene regulatory networks. However, estimating DAGs without assuming known ordering is challenging due to high dimensionality, the acyclic constraints, and the presence of equivalence class from observational data. To overcome these challenges, we propose a two stage adaptive Lasso approach, called NS-DIST, which performs neighborhood selection (NS) in stage 1, and then estimates DAGs by the discrete improving search with Tabu (DIST) algorithm within the selected neighborhood. Simulation studies are presented to demonstrate the effectiveness of the method and its computational efficiency. Two real data examples are used to demonstrate the practical usage of our method for gene regulatory network inference. Supplementary materials for this article are available online.
引用
收藏
页码:1004 / 1019
页数:16
相关论文
共 77 条
  • [1] [Anonymous], SERIES ARTIFICIAL IN
  • [2] [Anonymous], 1994, MACHINE LEARNING P 1, DOI DOI 10.1016/B978-1-55860-335-6.50023-4
  • [3] Aragam B, 2015, J MACH LEARN RES, V16, P2273
  • [4] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [5] A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    Beal, MJ
    Falciani, F
    Ghahramani, Z
    Rangel, C
    Wild, DL
    [J]. BIOINFORMATICS, 2005, 21 (03) : 349 - 356
  • [6] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [7] BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE
    BREIMAN, L
    [J]. TECHNOMETRICS, 1995, 37 (04) : 373 - 384
  • [8] Broom B. M., 2006, COMPUTATIONAL METHOD
  • [9] A guide to the literature on learning probabilistic networks from data
    Buntine, W
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (02) : 195 - 210
  • [10] Operations for Learning with Graphical Models
    Buntine, Wray L.
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 : 159 - 225