Reactor modeling of sorption-enhanced autothermal reforming of methane. Part II: Effect of operational parameters

被引:40
|
作者
Halabi, M. H. [1 ]
de Croon, M. H. J. M. [1 ]
van der Schaaf, J. [1 ]
Cobden, P. D. [2 ]
Schouten, J. C. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Chem Reactor Engn, NL-5600 MB Eindhoven, Netherlands
[2] Energy Res Ctr Netherlands, NL-1755 ZG Petten, Netherlands
关键词
Sorption enhanced reforming; Autothermal reforming; Adsorptive reactor; Hydrotalcite; Lithium zirconate; H-2; production; CO2; capture; HYDROGEN-PRODUCTION; KINETICS; ADSORPTION;
D O I
10.1016/j.cej.2011.02.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The process of sorption-enhanced autothermal reforming of methane is mathematically analyzed in a fixed bed reformer for pure H-2 production with in situ CO2 capture at low temperature. A conventional Ni/MgO steam reforming catalyst is used. K-promoted hydrotalcite and lithium zirconate materials are examined as potential sorbents. A 1D heterogeneous dynamic fixed bed reactor model is constructed and employed in the study. The model accounts for mass and thermal dispersion in the axial direction, pressure drop, and intraparticle and interfacial resistances. The process performance is analyzed under dynamic conditions with respect to key operational parameters: gas hourly space velocity, oxygen/carbon ratio, steam/carbon ratio, catalyst/sorbent ratio, operating pressure, and particle size. The influence of these parameters on gas temperature, CH4 conversion, H-2 yield and purity, and thermal reforming efficiency is demonstrated. The process is found to be benefited from low space velocity operation (0.05 kg/m(2) s), low pressure (4.47 bar), small particle size (0.5-1.0 mm), and high steam/carbon ratio (6). The high heat of reaction generated during the CO2 chemisorption on lithium zirconate is also investigated if it is sufficient to provide a heat supplement at lower oxygen/carbon ratio at the adiabatic conditions of the autothermal reforming process. Oxygen/carbon ratio of less than 0.35 results in methane conversion of less than 95%. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:883 / 888
页数:6
相关论文
共 50 条
  • [1] Reactor modeling of sorption-enhanced autothermal reforming of methane. Part I: Performance study of hydrotalcite and lithium zirconate-based processes
    Halabi, M. H.
    de Croon, M. H. J. M.
    van der Schaaf, J.
    Cobden, P. D.
    Schouten, J. C.
    CHEMICAL ENGINEERING JOURNAL, 2011, 168 (02) : 872 - 882
  • [2] Tandem bed configuration for sorption-enhanced steam reforming of methane
    Reijers, H. Th J.
    Elzinga, G. D.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 531 - 537
  • [3] Transient reaction phenomena of sorption-enhanced steam methane reforming in a fixed-bed reactor
    Sheu, Wen-Jenn
    Chang, Chung-Yu
    Chen, Yen-Cho
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) : 4357 - 4374
  • [4] The effect of non-uniform temperature on the sorption-enhanced steam methane reforming in a tubular fixed-bed reactor
    Huang, Wei-Je
    Yu, Ching-Tsung
    Sheu, Wen-Jenn
    Chen, Yen-Cho
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (31) : 16522 - 16533
  • [5] Prediction of sorption-enhanced reforming process on hydrotalcite sorbent in a fluidized bed reactor
    Wang, Shuai
    Xu, Shaodong
    Liu, Siyu
    Hu, Bang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 180 : 924 - 930
  • [6] Modeling of sorption enhanced steam methane reforming in an adiabatic packed bed reactor using various CO2 sorbents
    Shahid, M. Mateen
    Abbas, Syed Zaheer
    Maqbool, Fahad
    Ramirez-Solis, Sergio
    Dupont, Valerie
    Mahmud, Tariq
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [7] Kinetics analysis and process simulation for sorption-enhanced steam methane reforming
    Chen, Hengzhi
    Liu, Jing
    Guo, Zhengkui
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 2633 - 2637
  • [8] Modeling of sorption enhanced steam methane reforming in an adiabatic fixed bed reactor
    Fernandez, J. R.
    Abanades, J. C.
    Murillo, R.
    CHEMICAL ENGINEERING SCIENCE, 2012, 84 : 1 - 11
  • [9] Optimisation of a sorption-enhanced chemical looping steam methane reforming process
    Powell, Jon
    Wongsakulphasatch, Suwimol
    Kokoo, Rungrote
    Noppakun, Nichamon
    Prapainainar, Chaiwat
    Aziz, M. A. A.
    Assabumrungrat, Suttichai
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 173 : 183 - 192
  • [10] Numerical study of hydrogen production via sorption-enhanced steam methane reforming in a fluidized bed reactor at relatively low temperature
    Chen, Yumin
    Zhao, Yongchun
    Zheng, Chuguang
    Zhang, Junying
    CHEMICAL ENGINEERING SCIENCE, 2013, 92 : 67 - 80