Coupling programmed cell death 1-positive tumor-infiltrating T cells with anti-programmed cell death 1 antibody improves the efficacy of adoptive T-cell therapy

被引:2
作者
Chu, Jiacheng [1 ]
Wang, Chenya [1 ]
Ma, Qingle [1 ]
Dai, Huaxing [1 ]
Xu, Jialu [1 ]
Ogunnaike, Edikan A. [2 ]
Peng, Fei [3 ]
Shi, Xiaolin [4 ]
Wang, Chao [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] Univ N Carolina, Ctr Nanotechnol Drug Delivery, Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
[3] Harvard Med Sch, Wellman Ctr Photomed, Massachusetts Gen Hosp, Charlestown, MA USA
[4] Soochow Univ, Med Coll, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
tumor-infiltrating lymphocytes; PD-1; immune checkpoint antibody; Adoptive T-cell Therapy; IMMUNOTHERAPY; PD-1;
D O I
10.1016/j.jcyt.2021.08.004
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background aims: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has shown great success in clinical trials. Programmed cell death 1 (PD-1)-expressing TILs show high specificity to autologous tumor cells. However, limited therapeutic efficiency is observed as a result of the tumor immune microenvironment (TIME). Methods: Coupling PD-1(+) ex vivo-derived TILs with a monoclonal antibody against anti-PD-1 (aPD-1) reinvigorated the anti-tumor response of TILs against solid tumor without altering their high tumor targeting ability. Results: Using a melanoma-bearing mouse model, PD-1(+) TILs blocked with aPD-1 (PD-1(+) TILs-aPD-1) exhibited a high capability for tumor targeting as well as improved anti-tumor response in TIME. Tumor growth was substantially delayed in the mice treated with PD-1(+) TILs-aPD-1. Conclusions: The strategy utilizing TIL therapy coupled with immune checkpoint antibodies may extend to other therapeutic targets of ACT. (C) 2021 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 50 条
[31]   Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma [J].
Feng, Yong ;
Shen, Jacson ;
Gao, Yan ;
Liao, Yunfei ;
Cote, Gregory ;
Choy, Edwin ;
Chebib, Ivan ;
Mankin, Henry ;
Hornicek, Francis ;
Duan, Zhenfeng .
ONCOTARGET, 2015, 6 (13) :11139-11149
[32]   Prognostic implications of tumor-infiltrating lymphocytes in association with programmed cell death ligand 1 expression in remnant gastric cancer [J].
Pereira, Marina Alessandra ;
Ramos, Marcus Fernando Kodama Pertille ;
Dias, Andre Roncon ;
Cardili, Leonardo ;
de Moraes, Rafael Dyer Rodrigues ;
Ribeiro, Renan Ribeiro E. ;
Alves, Venancio Avancini Ferreira ;
Zilberstein, Bruno ;
de Mello, Evandro Sobroza ;
Ribeiro Jr, Ulysses .
CHINESE JOURNAL OF CANCER RESEARCH, 2022, 34 (06) :612-+
[33]   Generation of colon cancer-derived tumor-infiltrating T cells (TILs) for adoptive cell therapy [J].
Albrecht, Hendrik Christian ;
Gustavus, Dirk ;
Schwanemann, Jannis ;
Dammermann, Werner ;
Lippek, Frank ;
Weylandt, Karsten-Henrich ;
Hoffmeister, Hans ;
Gretschel, Stephan .
CYTOTHERAPY, 2023, 25 (05) :537-547
[34]   Prevalence of immune-related systemic adverse events in patients treated with anti-Programmed cell Death 1/anti-Programmed cell Death-Ligand 1 agents: A single-centre pharmacovigilance database analysis [J].
Le Burel, Sebastien ;
Champiat, Stephane ;
Mateus, Christine ;
Marabelle, Aurelien ;
Michot, Jean-Marie ;
Robert, Caroline ;
Belkhir, Rakiba ;
Soria, Jean-Charles ;
Laghouati, Salim ;
Voisin, Anne-Laure ;
Fain, Olivier ;
Mekinian, Arsene ;
Coutte, Laetitia ;
Szwebel, Tali-Anne ;
Dunogeant, Laetitia ;
Lioger, Bertrand ;
Luxembourger, Cecile ;
Mariette, Xavier ;
Lambotte, Olivier .
EUROPEAN JOURNAL OF CANCER, 2017, 82 :34-44
[35]   Prognostic effect of programmed cell death ligand 1/programmed cell death 1 expression in cancer stem cells of human oral squamous cell carcinoma [J].
Todoroki, Keita ;
Abe, Yushi ;
Matsuo, Katsuhisa ;
Nomura, Hidetoshi ;
Kawahara, Akihiko ;
Nakamura, Yoshiaki ;
Nakamura, Moriyoshi ;
Seki, Naoko ;
Kusukawa, Jingo .
ONCOLOGY LETTERS, 2024, 27 (02)
[36]   Targeting myeloid checkpoint Siglec-10 reactivates antitumor immunity and improves anti-programmed cell death 1 efficacy in gastric cancer [J].
Lv, Kunpeng ;
Sun, Mengyao ;
Fang, Hanji ;
Wang, Jieti ;
Lin, Chao ;
Liu, Hao ;
Zhang, Heng ;
Li, He ;
He, Hongyong ;
Gu, Yun ;
Li, Ruochen ;
Shao, Fei ;
Xu, Jiejie .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2023, 11 (11)
[37]   A Combination of the Immunotherapeutic Drug Anti-Programmed Death 1 with Lenalidomide Enhances Specific T Cell Immune Responses against Acute Myeloid Leukemia Cells [J].
Guinn, Barbara-ann ;
Schuler, Patrick J. ;
Schrezenmeier, Hubert ;
Hofmann, Susanne ;
Weiss, Johanna ;
Bulach, Christiane ;
Goetz, Marlies ;
Greiner, Jochen .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
[38]   Programmed cell death 1 ligand 1 signals in cancer cells [J].
Kornepati, Anand V. R. ;
Vadlamudi, Ratna K. ;
Curie, TylerJ .
NATURE REVIEWS CANCER, 2022, 22 (03) :174-189
[39]   Central diabetes insipidus related to anti-programmed cell-death 1 protein active immunotherapy [J].
Deligiorgi, Maria V. ;
Siasos, Gerasimos ;
Vergadis, Chrysovalantis ;
Trafalis, Dimitrios T. .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 83
[40]   Secretion of human soluble programmed cell death protein 1 by chimeric antigen receptor-modified T cells enhances anti-tumor efficacy [J].
Zhang, Ang ;
Sun, Yao ;
Wang, Shenyu ;
Du, Jie ;
Gao, Xiangyun ;
Yuan, Ye ;
Zhao, Long ;
Yang, Yang ;
Xu, Lei ;
Lei, Yangyang ;
Duan, Lian ;
Xu, Chen ;
Ma, Lei ;
Wang, Jinyu ;
Hu, Guoliang ;
Chen, Hu ;
Wang, Quanjun ;
Hu, Liangding ;
Zhang, Bin .
CYTOTHERAPY, 2020, 22 (12) :734-743