Eigenvalue Estimates on Bakry-Emery Manifolds

被引:4
|
作者
Charalambous, Nelia [1 ]
Lu, Zhiqin [2 ]
Rowlett, Julie [3 ,4 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Chalmers Univ Technol, Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
ELLIPTIC AND PARABOLIC EQUATIONS | 2015年 / 119卷
基金
美国国家科学基金会;
关键词
SCHRODINGER-OPERATORS; RICCI CURVATURE; 1ST EIGENVALUE; LOWER BOUNDS; LAPLACIAN; KERNEL; DIAMETER; GAP;
D O I
10.1007/978-3-319-12547-3_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We demonstrate lower bounds for the eigenvalues of compact Bakry-Emery manifolds with and without boundary. The lower bounds for the first eigenvalue rely on a generalized maximum principle which allows gradient estimates in the Riemannian setting to be directly applied to the Bakry-Emery setting. Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and a suitable Sobolev inequality.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条
  • [41] Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kahler-Einstein Manifolds
    Nakad, Roger
    Pilca, Mihaela
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [42] Quantitative estimates for the Bakry-Ledoux isoperimetric inequality
    Mai, Cong Hung
    Ohta, Shin-ichi
    COMMENTARII MATHEMATICI HELVETICI, 2021, 96 (04) : 693 - 739
  • [43] Hitting estimates on Einstein manifolds and applications
    Choi, Beomjun
    Haslhofer, Robert
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 261 - 280
  • [44] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [45] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [46] First Robin eigenvalue of the p-Laplacian on Riemannian manifolds
    Li, Xiaolong
    Wang, Kui
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1033 - 1047
  • [47] Explicit lower bound of the first eigenvalue of the Laplacian on Kahler manifolds
    Rutkowski, Benjamin
    Seto, Shoo
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (03): : 519 - 527
  • [48] Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound
    Hassannezhad, Asma
    Kokarev, Gerasim
    Polterovich, Iosif
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 807 - 835
  • [49] Sharp estimates for the principal eigenvalue of the p-operator
    Koerber, Thomas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [50] EIGENVALUE ESTIMATES ON DOMAIN OF THE POLYDISK
    Zheng, Tao
    Chen, Daguang
    Cai, Min
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (01)