Generalized solutions to the cubic Schrodinger equation

被引:10
|
作者
Bu, C
机构
[1] Department of Mathematics, Wellesley College, Wellesley
关键词
generalized functions; nonlinear Schrodinger equation; integrable systems; initial value problem;
D O I
10.1016/0362-546X(95)00124-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:769 / 774
页数:6
相关论文
共 50 条
  • [31] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [32] NODAL SOLUTIONS FOR A GENERALIZED QUASILINEAR SCHRODINGER EQUATION WITH CRITICAL EXPONENTS
    Cheng, Kun
    Deng, Yinbin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (01) : 77 - 103
  • [33] EXACT-SOLUTIONS FOR A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    PATHRIA, D
    MORRIS, JL
    PHYSICA SCRIPTA, 1989, 39 (06): : 673 - 679
  • [34] Periodic Wave Solutions of Generalized Derivative Nonlinear Schrodinger Equation
    Zha Qi-Lao
    Li Zhi-Bin
    CHINESE PHYSICS LETTERS, 2008, 25 (11) : 3844 - 3847
  • [35] Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients
    Kruglov, VI
    Peacock, AC
    Harvey, JD
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [36] Envelope exact solutions for the generalized nonlinear Schrodinger equation with a source
    Yan, Zhenya
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24): : L401 - L406
  • [37] Exact travelling wave solutions for a generalized nonlinear Schrodinger equation
    Hizanidis, K
    Frantzeskakis, DJ
    Polymilis, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7687 - 7703
  • [38] Solitary wave solutions of a generalized derivative nonlinear Schrodinger equation
    Wang Ming-Liang
    Mang Jin-Liang
    Li Xiang-Zheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (01) : 39 - 42
  • [39] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [40] Approximate analytic solutions of the Schrodinger equation for the generalized anharmonic oscillator
    Liverts, E. Z.
    Mandelzweig, V. B.
    PHYSICA SCRIPTA, 2008, 77 (02)