Spatial entanglement entropy in the ground state of the Lieb-Liniger model

被引:8
作者
Herdman, C. M. [1 ,2 ,3 ]
Roy, P. -N. [3 ]
Melko, R. G. [2 ,4 ]
Del Maestro, A. [5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CONTINUOUS-VARIABLE SYSTEMS; INTERACTING BOSE-GAS; MANY-FERMION SYSTEM; TONKS-GIRARDEAU GAS; PATH-INTEGRALS; QUANTUM; BOSONS; PHASE; FIELD; AREA;
D O I
10.1103/PhysRevB.94.064524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground-state path integral quantum Monte Carlo we numerically compute the Renyi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the Renyi entropy with subsystem size that is expected from conformal field theory, and compute the nonuniversal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] One-dimensional Lieb-Liniger Bose gas as nonrelativistic limit of the sinh-Gordon model
    Kormos, M.
    Mussardo, G.
    Trombettoni, A.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [42] Ultracold atoms in quasi-one-dimensional traps: A step beyond the Lieb-Liniger model
    Jachymski, Krzysztof
    Meinert, Florian
    Veksler, Hagar
    Julienne, Paul S.
    Fishman, Shmuel
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [43] Exact Perturbative Results for the Lieb-Liniger and Gaudin-Yang Models
    Marino, Marcos
    Reis, Tomas
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1148 - 1156
  • [44] Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state observables in the Lieb-Liniger and yang-Gaudin models
    Lang, Guillaume
    SCIPOST PHYSICS, 2019, 7 (04):
  • [45] Nonlocal pair correlations in Lieb-Liniger gases: A unified nonperturbative approach from weak degeneracy to high temperatures
    Geiger, Benjamin
    Hummel, Quirin
    Urbina, Juan Diego
    Richter, Klaus
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [46] One-particle density matrix of a trapped Lieb-Liniger anyonic gas
    Scopa, Stefano
    Piroli, Lorenzo
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (09):
  • [47] Relaxation dynamics of the Lieb-Liniger gas following an interaction quench: A coordinate Bethe-ansatz analysis
    Zill, Jan C.
    Wright, Tod M.
    Kheruntsyan, Karen V.
    Gasenzer, Thomas
    Davis, Matthew J.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [48] Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas
    Panfil, Milosz
    Caux, Jean-Sebastien
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [49] Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas
    Carmelo, J. M. P.
    Sacramento, P. D.
    ANNALS OF PHYSICS, 2016, 369 : 102 - 127
  • [50] Overlaps of q-raised Neel states with XXZ Bethe states and their relation to the Lieb-Liniger Bose gas
    Brockmann, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,