Spatial entanglement entropy in the ground state of the Lieb-Liniger model

被引:8
|
作者
Herdman, C. M. [1 ,2 ,3 ]
Roy, P. -N. [3 ]
Melko, R. G. [2 ,4 ]
Del Maestro, A. [5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CONTINUOUS-VARIABLE SYSTEMS; INTERACTING BOSE-GAS; MANY-FERMION SYSTEM; TONKS-GIRARDEAU GAS; PATH-INTEGRALS; QUANTUM; BOSONS; PHASE; FIELD; AREA;
D O I
10.1103/PhysRevB.94.064524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground-state path integral quantum Monte Carlo we numerically compute the Renyi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the Renyi entropy with subsystem size that is expected from conformal field theory, and compute the nonuniversal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Dark solitons revealed in Lieb-Liniger eigenstates
    Golletz, Weronika
    Gorecki, Wojciech
    Oldziejewski, Rafal
    Pawlowski, Krzysztof
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [22] Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas
    Rylands, Colin
    Rozenbaum, Efim
    Galitski, Victor
    Konik, Robert
    PHYSICAL REVIEW LETTERS, 2020, 124 (15)
  • [23] Drude weight for the Lieb-Liniger Bose gas
    Doyon, Benjamin
    Spohn, Herbert
    SCIPOST PHYSICS, 2017, 3 (06):
  • [24] Expectation Values in the Lieb-Liniger Bose Gas
    Kormos, M.
    Mussardo, G.
    Trombettoni, A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (21)
  • [25] Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model
    Karpiuk, Tomasz
    Sowinski, Tomasz
    Gajda, Mariusz
    Rzazewski, Kazimierz
    Brewczyk, Miroslaw
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [26] Low-density limit of dynamical correlations in the Lieb-Liniger model
    Granet, Etienne
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (15)
  • [27] The relevant excitations for the one-body function in the Lieb-Liniger model
    Panfil, Milosz
    Sant'Ana, Felipe Taha
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (07):
  • [28] Solution for an interaction quench in the Lieb-Liniger Bose gas
    De Nardis, Jacopo
    Wouters, Bram
    Brockmann, Michael
    Caux, Jean-Sebastien
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [29] Lieb-Liniger gas in a constant-force potential
    Jukic, D.
    Galic, S.
    Pezer, R.
    Buljan, H.
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [30] Understanding many-body physics in one dimension from the Lieb-Liniger model
    Jiang Yu-Zhu
    Chen Yang-Yang
    Guan Xi-Wen
    CHINESE PHYSICS B, 2015, 24 (05)