Spatial entanglement entropy in the ground state of the Lieb-Liniger model

被引:8
|
作者
Herdman, C. M. [1 ,2 ,3 ]
Roy, P. -N. [3 ]
Melko, R. G. [2 ,4 ]
Del Maestro, A. [5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CONTINUOUS-VARIABLE SYSTEMS; INTERACTING BOSE-GAS; MANY-FERMION SYSTEM; TONKS-GIRARDEAU GAS; PATH-INTEGRALS; QUANTUM; BOSONS; PHASE; FIELD; AREA;
D O I
10.1103/PhysRevB.94.064524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground-state path integral quantum Monte Carlo we numerically compute the Renyi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the Renyi entropy with subsystem size that is expected from conformal field theory, and compute the nonuniversal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Excitation Spectrum of the Lieb-Liniger Model
    Ristivojevic, Zoran
    PHYSICAL REVIEW LETTERS, 2014, 113 (01)
  • [2] A generalized Lieb-Liniger model
    Veksler, Hagar
    Fishman, Shmuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [4] Quantum holonomy in the Lieb-Liniger model
    Yonezawa, Nobuhiro
    Tanaka, Atushi
    Cheon, Taksu
    PHYSICAL REVIEW A, 2013, 87 (06)
  • [5] THE MEAN-FIELD LIMIT OF THE LIEB-LINIGER MODEL
    Rosenzweig, Matthew
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06) : 3005 - 3037
  • [6] Temperature-driven crossover in the Lieb-Liniger model
    Kluemper, Andreas
    Patu, Ovidiu I.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [7] Spectrum statistics in the integrable Lieb-Liniger model
    Mailoud, Samy
    Borgonovi, Fausto
    Izrailev, Felix M.
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [8] Ground-state energy and excitation spectrum of the Lieb-Liniger model: accurate analytical results and conjectures about the exact solution
    Lang, Guillaume
    Hekking, Frank
    Minguzzi, Anna
    SCIPOST PHYSICS, 2017, 3 (01):
  • [9] Classical and quantum metrology of the Lieb-Liniger model
    Baak, Jae-Gyun
    Fischer, Uwe R.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [10] Analytic thermodynamic properties of the Lieb-Liniger gas
    Kerr, Matthew L.
    De Rosi, Giulia
    Kheruntsyan, Karen, V
    SCIPOST PHYSICS CORE, 2024, 7 (03):