A stochastic approach to a new type of parabolic variational inequalities

被引:6
作者
Nie, Tianyang [1 ,2 ,3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ Bretagne Occidentale, Math Lab, F-29285 Brest 3, France
[3] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
forward-backward stochastic differential equations; variational inequalities; subdifferential operators; viscosity solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; BACKWARD SDES; PDES;
D O I
10.1080/17442508.2014.989396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following quasilinear partial differential equation with two subdifferential operators: { partial derivative u/partial derivative s (s, x) + (Lu)(s, x, u(s, x), (del u(s, x))* sigma(s, x, u(s, x))) +f(s, x, u(s, x), (del u(s, x))* sigma (s, x, u(s, x))) is an element of partial derivative phi(u(s, x)) + <partial derivative phi(x), del u(s, x)>, (s, x) is an element of[0, T] X Dom psi, u(T, x) = g(x), x is an element of Dom phi, where for u is an element of C-1,C-2 ([0, T] X Dom phi) and (s, x, y, z) is an element of [0, T] X Dom phi X Dom phi X R-1xd (Lu) (s, x, y, z) : = 1/2 Sigma(n)(i, j=1) (sigma sigma*)(i,j)(s, x, y) partial derivative(2)u/partial derivative x(i)partial derivative x(j) (s, x) + Sigma(n)(i=1) b(i)(s, x, y, z) partial derivative u/partial derivative x(i) (s, x). The operator partial derivative phi (resp. partial derivative phi) is the subdifferential of the convex lower semicontinuous function psi : R-n -> (-infinity, +infinity) (resp. phi : R -> (-infinity, +infinity). We define the viscosity solution for such kind of partial differential equation and prove the uniqueness of the viscosity solution when s does not depend on y. To prove the existence of a viscosity solution, a stochastic representation formula of Feymann-Kac type will be developed. For this end, we investigate a fully coupled forward-backward stochastic variational inequality.
引用
收藏
页码:477 / 517
页数:41
相关论文
共 50 条
  • [1] Variational inequalities of elliptic and parabolic type
    Rudd, M
    Schmitt, K
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (03): : 287 - 322
  • [2] A polynomial chaos approach to stochastic variational inequalities
    Forster, R.
    Kornhuber, R.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 235 - 255
  • [3] Backward stochastic differential equations with subdifferential operator and related variational inequalities
    Pardoux, E
    Rascanu, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 76 (02) : 191 - 215
  • [4] Viscosity solutions for systems of parabolic variational inequalities
    Maticiuc, Lucian
    Pardoux, Etienne
    Rascanu, Aurel
    Zalinescu, Adrian
    BERNOULLI, 2010, 16 (01) : 258 - 273
  • [5] STOCHASTIC OPTIMAL SWITCHING AND SYSTEMS OF VARIATIONAL INEQUALITIES WITH INTERCONNECTED OBSTACLES
    El Asri, Brahim
    Fakhouri, Imade
    Ourkiya, Nacer
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025, 14 (01): : 123 - 156
  • [6] Existence of solutions for parabolic variational inequalities
    Farah Balaadich
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 731 - 745
  • [7] Optimal control of parabolic variational inequalities
    Ito, Kazufumi
    Kunisch, Karl
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (04): : 329 - 360
  • [8] Existence of solutions for parabolic variational inequalities
    Balaadich, Farah
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 731 - 745
  • [9] Parabolic Quasi-Variational Inequalities. I: Semimonotone Operator Approach
    Gokieli, Maria
    Kenmochi, Nobuyuki
    Niezgodka, Marek
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (02) : 531 - 558
  • [10] Parabolic variational inequalities with generalized reflecting directions
    Rotenstein, Eduard
    OPEN MATHEMATICS, 2015, 13 : 860 - 867