Progression of NMR studies of membrane-active peptides from lipid bilayers to live cells

被引:17
|
作者
Sani, M. -A. [1 ]
Separovic, F. [1 ]
机构
[1] Univ Melbourne, Sch Chem, Inst Bio21, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Solid-state NMR; Antimicrobial peptides; Amyloid peptides; Phospholipid bilayers; Oriented bilayers; MAS; REDOR; Lipid-peptide interactions; SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; AUSTRALIAN TREE FROGS; GRAMICIDIN-A; ANTIMICROBIAL PEPTIDES; ROTATING SOLIDS; PHOSPHOLIPID-MEMBRANES; STAPHYLOCOCCUS-AUREUS; MODEL MEMBRANES; P-31; NMR;
D O I
10.1016/j.jmr.2014.11.016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the structure of membrane-active peptides faces many challenges associated with the development of appropriate model membrane systems as the peptide structure depends strongly on the lipid environment. This perspective provides a brief overview of the approach taken to study antimicrobial and amyloid peptides in phospholipid bilayers using oriented bilayers and magic angle spinning techniques. In particular, Boltzmann statistics REDOR and maximum entropy analysis of spinning side bands are used to analyse systems where multiple states of peptide or lipid molecules may co-exist. We propose that in future, rather than model membranes, structural studies in whole cells are feasible. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 142
页数:5
相关论文
共 50 条
  • [31] Modulating the activity of membrane-active peptides through Zn(II) complexation
    Paquet-Cote, Pierre-Alexandre
    Tuck, Kellie L.
    Paradis, Jean -Philippe
    Graham, Bim
    Voyer, Normand
    TETRAHEDRON LETTERS, 2017, 58 (50) : 4672 - 4676
  • [32] Machine learning-enabled discovery and design of membrane-active peptides
    Lee, Ernest Y.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) : 2708 - 2718
  • [33] Probing Membrane Protein Insertion into Lipid Bilayers by Solid-State NMR
    Najbauer, Eszter E.
    Movellan, Kumar Tekwani
    Schubeis, Tobias
    Schwarzer, Tom
    Castiglione, Kathrin
    Giller, Karin
    Pintacuda, Guido
    Becker, Stefan
    Andreas, Loren B.
    CHEMPHYSCHEM, 2019, 20 (02) : 302 - 310
  • [34] Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides
    Wiedman, Gregory
    Wimley, William C.
    Hristova, Kalina
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (04): : 951 - 957
  • [35] Advance and Designing Strategies in Polymeric Antifungal Agents Inspired by Membrane-Active Peptides
    Jiang, Weinan
    Wu, Yueming
    Zhou, Min
    Song, Gonghua
    Liu, Runhui
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (65)
  • [36] Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR
    Hong, Mei
    Su, Yongchao
    PROTEIN SCIENCE, 2011, 20 (04) : 641 - 655
  • [37] Membrane-active antimicrobial peptides and human placental lysosomal extracts are highly active against mycobacteria
    Jena, Prajna
    Mishra, Bibhuti
    Leippe, Matthias
    Hasilik, Andrej
    Griffiths, Gareth
    Sonawane, Avinash
    PEPTIDES, 2011, 32 (05) : 881 - 887
  • [38] Hemolytic Activity of Membrane-Active Peptides Correlates with the Thermodynamics of Binding to 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine Bilayers
    Spaller, B. Logan
    Trieu, Julie M.
    Almeida, Paulo F.
    JOURNAL OF MEMBRANE BIOLOGY, 2013, 246 (03) : 257 - 262
  • [39] Delivering Structural Information on the Polar Face of Membrane-Active Peptides: 19F-NMR Labels with a Cationic Side Chain
    Michurin, Oleg M.
    Afonin, Sergii
    Berditsch, Marina
    Daniliuc, Constantin G.
    Ulrich, Anne S.
    Komarov, Igor V.
    Radchenko, Dmytro S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) : 14595 - 14599
  • [40] Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides
    Huy Xuan Luong
    Hai Thi Phuong Bui
    Truong Thanh Tung
    JOURNAL OF MEDICINAL CHEMISTRY, 2022, 65 (04) : 3026 - 3045