Progression of NMR studies of membrane-active peptides from lipid bilayers to live cells

被引:17
|
作者
Sani, M. -A. [1 ]
Separovic, F. [1 ]
机构
[1] Univ Melbourne, Sch Chem, Inst Bio21, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Solid-state NMR; Antimicrobial peptides; Amyloid peptides; Phospholipid bilayers; Oriented bilayers; MAS; REDOR; Lipid-peptide interactions; SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; AUSTRALIAN TREE FROGS; GRAMICIDIN-A; ANTIMICROBIAL PEPTIDES; ROTATING SOLIDS; PHOSPHOLIPID-MEMBRANES; STAPHYLOCOCCUS-AUREUS; MODEL MEMBRANES; P-31; NMR;
D O I
10.1016/j.jmr.2014.11.016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the structure of membrane-active peptides faces many challenges associated with the development of appropriate model membrane systems as the peptide structure depends strongly on the lipid environment. This perspective provides a brief overview of the approach taken to study antimicrobial and amyloid peptides in phospholipid bilayers using oriented bilayers and magic angle spinning techniques. In particular, Boltzmann statistics REDOR and maximum entropy analysis of spinning side bands are used to analyse systems where multiple states of peptide or lipid molecules may co-exist. We propose that in future, rather than model membranes, structural studies in whole cells are feasible. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 142
页数:5
相关论文
共 50 条
  • [1] NMR methods for studying membrane-active antimicrobial peptides
    Strandberg, E
    Ulrich, AS
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2004, 23A (02) : 89 - 120
  • [2] The Polymorphic Nature of Membrane-Active Peptides from Biophysical and Structural Investigations
    Bechinger, Burkhard
    Aisenbrey, Christopher
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2012, 13 (07) : 602 - 610
  • [3] How Membrane-Active Peptides Get into Lipid Membranes
    Sani, Marc-Antoine
    Separovic, Frances
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (06) : 1130 - 1138
  • [4] Membrane-Active Peptides and the Clustering of Anionic Lipids
    Wadhwani, P.
    Epand, R. F.
    Heidenreich, N.
    Buerck, J.
    Ulrich, A. S.
    Epand, R. M.
    BIOPHYSICAL JOURNAL, 2012, 103 (02) : 265 - 274
  • [5] Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides
    Mitchell, Natalie J.
    Seaton, Pamela
    Pokorny, Antje
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2016, 1858 (05): : 988 - 994
  • [6] Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry
    Joanne, Pierre
    Galanth, Cecile
    Goasdoue, Nicole
    Nicolas, Pierre
    Sagan, Sandrine
    Lavielle, Solange
    Chassaing, Gerard
    El Amri, Chahrazade
    Alves, Isabel D.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (09): : 1772 - 1781
  • [7] Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides
    Grage, Stephan L.
    Afonin, Sergii
    Kara, Sezgin
    Buth, Gernot
    Ulrich, Anne S.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2016, 4
  • [8] A common landscape for membrane-active peptides
    Last, Nicholas B.
    Schlamadinger, Diana E.
    Miranker, Andrew D.
    PROTEIN SCIENCE, 2013, 22 (07) : 870 - 882
  • [9] Probing and Manipulating the Lateral Pressure Profile in Lipid Bilayers Using Membrane-Active Peptides-A Solid-State 19F NMR Study
    Grage, Stephan L.
    Afonin, Sergii
    Ieronimo, Marco
    Berditsch, Marina
    Wadhwani, Parvesh
    Ulrich, Anne S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [10] Synergies with and Resistance to Membrane-Active Peptides
    Kmeck, Adam
    Tancer, Robert J.
    Ventura, Cristina R.
    Wiedman, Gregory R.
    ANTIBIOTICS-BASEL, 2020, 9 (09): : 1 - 15