The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective

被引:89
作者
Obidin, Nikita [1 ]
Tasnim, Farita [1 ]
Dagdeviren, Canan [1 ]
机构
[1] MIT, MIT Media Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
biocompatible materials; brain-computer interfaces; conformable hybrid devices; FDA regulatory processes; neuroimplantable devices; TRANSFER PRINTING TECHNIQUES; BRAIN-TISSUE; NEURAL PROBE; MECHANICAL-PROPERTIES; ELECTRODE ARRAY; OPTICAL CONTROL; FDA REGULATION; IN-VIVO; STIMULATION; INTERFACE;
D O I
10.1002/adma.201901482
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past two decades have seen unprecedented progress in the development of novel materials, form factors, and functionalities in neuroimplantable technologies, including electrocorticography (ECoG) systems, multielectrode arrays (MEAs), Stentrode, and deep brain probes. The key considerations for the development of such devices intended for acute implantation and chronic use, from the perspective of biocompatible hybrid materials incorporation, conformable device design, implantation procedures, and mechanical and biological risk factors, are highlighted. These topics are connected with the role that the U.S. Food and Drug Administration (FDA) plays in its regulation of neuroimplantable technologies based on the above parameters. Existing neuroimplantable devices and efforts to improve their materials and implantation protocols are first discussed in detail. The effects of device implantation with regards to biocompatibility and brain heterogeneity are then explored. Topics examined include brain-specific risk factors, such as bacterial infection, tissue scarring, inflammation, and vasculature damage, as well as efforts to manage these dangers through emerging hybrid, bioelectronic device architectures. The current challenges of gaining clinical approval by the FDA-in particular, with regards to biological, mechanical, and materials risk factors-are summarized. The available regulatory pathways to accelerate next-generation neuroimplantable devices to market are then discussed.
引用
收藏
页数:26
相关论文
共 204 条
[61]   A New Chronic Neural Probe with Electroplated Iridium Oxide Microelectrodes [J].
Han, Martin ;
McCreery, Douglas B. .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :4220-4221
[62]   Future of Brain Stimulation: New Targets, New Indications, New Technology [J].
Hariz, Marwan ;
Blomstedt, Patric ;
Zrinzo, Ludvic .
MOVEMENT DISORDERS, 2013, 28 (13) :1784-1792
[63]  
Henle C., 2013, Towards Practical Brain-Computer Interfaces, P85
[64]   A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording [J].
Hess-Dunning, Allison ;
Tyler, Dustin J. .
MICROMACHINES, 2018, 9 (11)
[65]   Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease [J].
Hickey, Patrick ;
Stacy, Mark .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[66]   Tissue-like Neural Probes for Understanding and Modulating the Brain [J].
Hong, Guosong ;
Viveros, Robert D. ;
Zwang, Theodore J. ;
Yang, Xiao ;
Lieber, Charles M. .
BIOCHEMISTRY, 2018, 57 (27) :3995-4004
[67]   Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions [J].
Howard, David M. ;
Adams, Mark J. ;
Clarke, Toni-Kim ;
Hafferty, Jonathan D. ;
Gibson, Jude ;
Shirali, Masoud ;
Coleman, Jonathan R. I. ;
Hagenaars, Saskia P. ;
Ward, Joey ;
Wigmore, Eleanor M. ;
Alloza, Clara ;
Shen, Xueyi ;
Barbu, Miruna C. ;
Xu, Eileen Y. ;
Whalley, Heather C. ;
Marioni, Riccardo E. ;
Porteous, David J. ;
Davies, Gail ;
Deary, Ian J. ;
Hemani, Gibran ;
Berger, Klaus ;
Teismann, Henning ;
Rawal, Rajesh ;
Arolt, Volker ;
Baune, Bernhard T. ;
Dannlowski, Udo ;
Domschke, Katharina ;
Tian, Chao ;
Hinds, David A. ;
Agee, M. ;
Alipanahi, B. ;
Auton, A. ;
Bell, R. K. ;
Bryc, K. ;
Elson, S. L. ;
Fontanillas, P. ;
Furlotte, N. A. ;
Hicks, B. ;
Huber, K. E. ;
Jewett, E. M. ;
Jiang, Y. ;
Kleinman, A. ;
Lin, K. Han. ;
Litterman, N. K. ;
McIntyre, M. H. ;
Mountain, J. L. ;
Noblin, E. S. ;
Northover, C. A. M. ;
Pitts, S. J. ;
Poznik, G. D. .
NATURE NEUROSCIENCE, 2019, 22 (03) :343-+
[68]   Accelerated aging for testing polymeric biomaterials and medical devices [J].
Hukins, D. W. L. ;
Mahomed, A. ;
Kukureka, S. N. .
MEDICAL ENGINEERING & PHYSICS, 2008, 30 (10) :1270-1274
[69]  
International Organization for Standardization, 2016, BIOL EV MED DEV 1
[70]  
Jasper H.H., 1949, ARCH PSYCHIAT NERVEN, V183, P163, DOI DOI 10.1007/BF01062488