The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective

被引:89
作者
Obidin, Nikita [1 ]
Tasnim, Farita [1 ]
Dagdeviren, Canan [1 ]
机构
[1] MIT, MIT Media Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
biocompatible materials; brain-computer interfaces; conformable hybrid devices; FDA regulatory processes; neuroimplantable devices; TRANSFER PRINTING TECHNIQUES; BRAIN-TISSUE; NEURAL PROBE; MECHANICAL-PROPERTIES; ELECTRODE ARRAY; OPTICAL CONTROL; FDA REGULATION; IN-VIVO; STIMULATION; INTERFACE;
D O I
10.1002/adma.201901482
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past two decades have seen unprecedented progress in the development of novel materials, form factors, and functionalities in neuroimplantable technologies, including electrocorticography (ECoG) systems, multielectrode arrays (MEAs), Stentrode, and deep brain probes. The key considerations for the development of such devices intended for acute implantation and chronic use, from the perspective of biocompatible hybrid materials incorporation, conformable device design, implantation procedures, and mechanical and biological risk factors, are highlighted. These topics are connected with the role that the U.S. Food and Drug Administration (FDA) plays in its regulation of neuroimplantable technologies based on the above parameters. Existing neuroimplantable devices and efforts to improve their materials and implantation protocols are first discussed in detail. The effects of device implantation with regards to biocompatibility and brain heterogeneity are then explored. Topics examined include brain-specific risk factors, such as bacterial infection, tissue scarring, inflammation, and vasculature damage, as well as efforts to manage these dangers through emerging hybrid, bioelectronic device architectures. The current challenges of gaining clinical approval by the FDA-in particular, with regards to biological, mechanical, and materials risk factors-are summarized. The available regulatory pathways to accelerate next-generation neuroimplantable devices to market are then discussed.
引用
收藏
页数:26
相关论文
共 204 条
[1]   THE BASIS OF SENSATION - SOME RECENT STUDIES OF OLFACTION [J].
ADRIAN, ED .
BRITISH MEDICAL JOURNAL, 1954, 1 (4857) :289-290
[2]   Near-Field Wireless Power Transfer to Stent-Based Biomedical Implants [J].
Aldaoud, Ammar ;
Redoute, Jean-Michel ;
Ganesan, Kumaravelu ;
Rind, Gil S. ;
John, Sam E. ;
Ronayne, Stephen M. ;
Opie, Nicholas L. ;
Garrett, David J. ;
Prawer, Steven .
IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2018, 2 (03) :193-200
[3]   FDA Regulation of Neurological and Physical Medicine Devices: Access to Safe and Effective Neurotechnologies for All Americans [J].
Anderson, Leigh ;
Antkowiak, Patrick ;
Asefa, Aden ;
Ballard, Amber ;
Bansal, Tushar ;
Bello, Ayo ;
Berne, Bernard ;
Bowsher, Kristen ;
Blumenkopf, Bennett ;
Broverman, Ian ;
Bydon, Mohamad ;
Chao, Kuo ;
Como, Peter ;
Cork, Karlene ;
Costello, Ann ;
De laurentis, Kathryn ;
DeMarco, Angela ;
Dean, Heather ;
Doucet, John ;
Dworak, Bradley ;
Epperson, Lisa ;
Franca, Eric ;
Ghassemian, Naz ;
Ghosh, Chandramallika ;
Govindarajan, Anupama ;
Gupta, Jay ;
Gutowski, Stacie ;
Herrmann, Robert ;
Hoffmann, Michael ;
Heetderks, William ;
Hsu, Steven ;
Kaufman, Daryl ;
Keegan, Erin ;
Kittlesen, Gregg ;
Khuu, Kevin ;
Lee, Hyung ;
Lo, Larry ;
Marcus, Ian ;
Marjenin, Timothy ;
Mathews, Binoy ;
Misra, Sanjay ;
Pinto, Vivek ;
Ramos, Vesper ;
Raben, Samuel ;
Russell, Avena ;
Saha, Devjani ;
Seog, Joonil ;
Shenouda, Christian ;
Smith, Myra ;
Tang, Xiaorui .
NEURON, 2016, 92 (05) :943-948
[4]  
[Anonymous], 2018, AG Q M MDUFA 4 FY 20
[5]   Role of subdural electrocorticography in prediction of long-term seizure outcome in epilepsy surgery [J].
Asano, Eishi ;
Juhasz, Csaba ;
Shah, Aashit ;
Sood, Sandeep ;
Chugani, Harry T. .
BRAIN, 2009, 132 :1038-1047
[6]   Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes [J].
Asplund, M. ;
Thaning, E. ;
Lundberg, J. ;
Sandberg-Nordqvist, A. C. ;
Kostyszyn, B. ;
Inganas, O. ;
von Holst, H. .
BIOMEDICAL MATERIALS, 2009, 4 (04)
[7]  
Badstubner K., 2013, BIOMEDICAL ENG SYSTE, P287
[8]   Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates [J].
Barrese, James C. ;
Aceros, Juan ;
Donoghue, John P. .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (02)
[9]   Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates [J].
Barrese, James C. ;
Rao, Naveen ;
Paroo, Kaivon ;
Triebwasser, Corey ;
Vargas-Irwin, Carlos ;
Franquemont, Lachlan ;
Donoghue, John P. .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (06)
[10]  
Barz F, 2015, PROC IEEE MICR ELECT, P636, DOI 10.1109/MEMSYS.2015.7051036