The reidemeister number of any automorphism of a Baumslag-Solitar group is infinite

被引:0
作者
Fel'shtyn, Alexander [1 ]
Goncalves, Daciberg L. [1 ]
机构
[1] Univ Szczecin, Inst Matemat, PL-70451 Szczecin, Poland
来源
GEOMETRY AND DYNAMICS OF GROUPS AND SPACES | 2008年 / 265卷
基金
巴西圣保罗研究基金会;
关键词
Reidemeister number; twisted conjugacy classes; Baumslag-Solitar groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi : G --> G be a group endomorphism where G is a finitely generated group of exponential growth, and let R(phi) denote the number of phi-conjugacy classes. Fel'shtyn and Hill [10] conjectured that if phi is injective, then R(phi) is infinite. In this paper, we show that the conjecture holds for the Baumslag-Solitar groups B(m,n), where either vertical bar m vertical bar or vertical bar n vertical bar is greater than 1 and vertical bar m vertical bar not equal vertical bar n vertical bar. We also show that in the cases where vertical bar m vertical bar = vertical bar n vertical bar > 1 or mn = -1 the conjecture is true for automorphisms. In addition, we derive few results about the coincidence Reidemeister number.
引用
收藏
页码:399 / +
页数:4
相关论文
共 34 条
  • [1] BAUMSLAG G, 1962, B AM MATH SOC, V68, P199, DOI 10.1090/S0002-9904-1962-10745-9
  • [2] BLEAK C, 2007, ARXIVMATHGR07043441
  • [3] Brown K. S., 1982, COHOMOLOGY GROUPS
  • [4] COHEN D, 1989, LMS STUDENT TEXTS, V14
  • [5] DELAHARPE P, 2000, CHICAGO LECT MATH SE
  • [6] Quasi-isometric rigidity for the solvable Baumslag-Solitar groups, II
    Farb, B
    Mosher, L
    [J]. INVENTIONES MATHEMATICAE, 1999, 137 (03) : 613 - 649
  • [7] On the asymptotic geometry of abelian-by-cyclic groups
    Farb, B
    Mosher, L
    [J]. ACTA MATHEMATICA, 2000, 184 (02) : 145 - 202
  • [8] Fel'shtyn A., 2006, NONCOMMUTATIVE GEOME, P141
  • [9] Fel'shtyn A, 2006, ALGEBRA DISCRET MATH, P36
  • [10] Fel'shtyn A, 2006, MATH RES LETT, V13, P719