Keyphrase Generation With CopyNet and Semantic Web

被引:3
作者
Zhu, Xun [1 ,2 ]
Lyu, Chen [3 ]
Ji, Donghong [1 ]
机构
[1] Wuhan Univ, Sch Cyber Sci & Engn, Minist Educ, Key Lab Aerosp Informat Secur & Trusted Comp, Wuhan 430072, Peoples R China
[2] Jianghan Univ, Sch Math & Comp Sci, Wuhan 430056, Peoples R China
[3] Guangdong Univ Foreign Studies, Collaborat Innovat Ctr Language Res & Serv, Guangzhou 510420, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
国家教育部科学基金资助; 中国国家自然科学基金;
关键词
Task analysis; Semantic Web; Decoding; Semantics; Vocabulary; Transforms; Neural networks; Keyphrase generation; encoder-decoder model; copying mechanism; semantic web;
D O I
10.1109/ACCESS.2020.2977508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyphrases provide core information for users to understand the document. Most previous works utilize machine learning based methods for keyphrases extraction and achieve promising performance. However, these methods focus on identify keyphrases from the input text, and can not extract keyphrases that do not appear in the text. In this paper, we present an encoder-decoder framework, which incorporating copying mechanism, to generate keyphrases for the given text. This framework (CopyNet) integrates the generation part and copying part. The generation part generates the keyphrase from the predefined vocabulary, and the copy part gets the keyphrases from the source text. Furthermore, we improve the CopyNet by using different probability of the two parts. To incorporate more related information for keyphrase generation, the automatically built keyphrase semantic web is merged into the dataset to participate in the training process of the neural network. Semantic similarity based and word co-occurrence based methods are used for keyphrase semantic web construction. We build a large-scale biomedical keyphrase dataset to evaluate the system performance. Experiments show that our improved CopyNet can achieve better performance with different portions of the generation and copying part, and the incorporation of the semantic web also effectively improves the keyphrase generation.
引用
收藏
页码:44202 / 44210
页数:9
相关论文
共 50 条
[21]   Merging model driven architecture and semantic Web for business rules generation [J].
Diouf, Mouhamed ;
Maabout, Sofian ;
Musumbu, Kaninda .
WEB REASONING AND RULE SYSTEMS, PROCEEDINGS, 2007, 4524 :118-+
[22]   Towards the Generation of Explanations for Semantic Web Services in OWL-S [J].
Fernandes, Carlos G. ;
Furtado, Vasco ;
Glass, Alyssa ;
McGuinness, Deborah L. .
APPLIED COMPUTING 2008, VOLS 1-3, 2008, :2350-+
[23]   An intensional perspective on the semantic and pragmatic web [J].
Aaberge T. ;
Akerkar R. ;
Boley H. .
International Journal of Metadata, Semantics and Ontologies, 2011, 6 (01) :74-80
[24]   Semantic web technologies: Ready for adoption? [J].
Mihailo Pupin Institute, Belgrade, Serbia ;
不详 .
IT Prof, 2009, 5 (8-16) :8-16
[25]   Blockchain-Based Semantic Information Sharing and Pricing for Web 3.0 [J].
Lin, Yijing ;
Gao, Zhipeng ;
Du, Hongyang ;
Niyato, Dusit ;
Kang, Jiawen ;
Gao, Yulan ;
Wang, Jiacheng ;
Jamalipour, Abbas .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05) :3918-3930
[26]   Trust estimation of the semantic web using semantic web clustering [J].
Shirgahi, Hossein ;
Mohsenzadeh, Mehran ;
Javadi, Hamid Haj Seyyed .
JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2017, 29 (03) :537-556
[27]   Research on the Application and Development of Next-Generation Semantic Web in Cloud Environment [J].
Fan, Jiaolian .
PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 :375-378
[28]   Automatic generation of service ontology from UML diagrams for semantic web services [J].
Yang, Jin Hyuk ;
Chung, In Jeong .
SEMANTIC WEB - ASWC 2006, PROCEEDINGS, 2006, 4185 :523-529
[29]   Selected Challenges in Grammar-Based Text Generation from the Semantic Web [J].
Mille, Simon .
ARTIFICIAL INTELLIGENCE, 2019, 11866 :85-95
[30]   When the Social Meets the Semantic: Social Semantic Web or Web 2.5 [J].
Pileggi, Salvatore F. ;
Fernandez-Llatas, Carlos ;
Traver, Vicente .
FUTURE INTERNET, 2012, 4 (03) :852-864