A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications

被引:76
|
作者
Nair, Sandhya [1 ]
Remya, N. S. [1 ]
Remya, S. [1 ]
Nair, Prabha D. [1 ]
机构
[1] Sree Chitra Tirunal Inst Med Sci & Technol, Div Tissue Engn & Regenerat Technol, Biomed Technol Wing, Thiruvananthapuram 12, Kerala, India
关键词
Chitosan; Hydrogels; Hyaluronic acid; Tissue engineering; DEGRADATION; CARTILAGE;
D O I
10.1016/j.carbpol.2011.04.004
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
An "in situ" biodegradable gel consisting of chitosan, glycerol phosphate (GP) and oxidized hyaluronic acid (HDA) were synthesised and characterized This is a two component hydrogel system where chitosan neutralized with GP resulted in instantaneous gelling when combined with HDA. The gels are cytocompatible and could be freeze dried to form porous scaffolds. The percentage porosity of the freeze-dried chitosan hyaluronic acid dialdehyde gels (CHDA) increased with increasing oxidation. Fibroblast cells seeded onto CHDA porous scaffolds adhered, proliferated and produced ECM components on the scaffold. Chondrocytes encapsulated in CHDA gels retained their viability and specific phenotypic characteristics. The gel material is hence proposed as a scaffold and encapsulating material for tissue engineering applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:838 / 844
页数:7
相关论文
共 50 条
  • [1] Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering
    Tan, Huaping
    Chu, Constance R.
    Payne, Karin A.
    Marra, Kacey G.
    BIOMATERIALS, 2009, 30 (13) : 2499 - 2506
  • [2] Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications
    Pandit, Ashiq Hussain
    Mazumdar, Nasreen
    Ahmad, Sharif
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 137 : 853 - 869
  • [3] Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering
    Park, Hyejin
    Choi, Bogyu
    Hu, Junli
    Lee, Min
    ACTA BIOMATERIALIA, 2013, 9 (01) : 4779 - 4786
  • [4] Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering
    Lee, Eun Joo
    Kang, Eunae
    Kang, Sun-Woong
    Huh, Kang Moo
    CARBOHYDRATE POLYMERS, 2020, 244
  • [5] Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering
    Tan, Huaping
    Ramirez, Christina M.
    Miljkovic, Natasa
    Li, Han
    Rubin, J. Peter
    Marra, Kacey G.
    BIOMATERIALS, 2009, 30 (36) : 6844 - 6853
  • [6] Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration
    Tan, Huaping
    Rubin, J. Peter
    Marra, Kacey G.
    ORGANOGENESIS, 2010, 6 (03) : 173 - 180
  • [7] Synthesis and characterization of injectable chitosan, hyaluronic acid, and hydroxyapatite blend hydrogel aimed at bone tissue engineering application
    Sarita
    Dayaram, Pal Manisha
    Rai, Ambak K.
    Tewari, Ravi Prakash
    Dutta, Pradip Kumar
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (04)
  • [8] Injectable in situ forming hydrogel based on carboxymethyl chitosan for sustained release of hyaluronic acid: A viscosupplement for biomedical applications
    Zamini, Noura
    Mirzadeh, Hamid
    Solouk, Atefeh
    Shafipour, Reza
    CARBOHYDRATE POLYMERS, 2025, 352
  • [9] A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering
    Miranda, Diego G.
    Malmonge, Sonia M.
    Campos, Doris M.
    Attik, Nina G.
    Grosgogeat, Brigitte
    Gritsch, Kerstin
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (08) : 1691 - 1702
  • [10] Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications
    Sekar, Muthu Parkkavi
    Suresh, Shruthy
    Zennifer, Allen
    Sethuraman, Swaminathan
    Sundaramurthi, Dhakshinamoorthy
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (06) : 3134 - 3159