Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation

被引:74
作者
Yi, Xuanying [1 ]
Yuan, Jili [2 ]
Tang, Haifang [2 ]
Du, Yi [1 ]
Hassan, Bashir [3 ]
Yin, Kai [1 ,3 ,4 ]
Chen, Yuqing [1 ]
Liu, Xia [1 ]
机构
[1] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[4] Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Pollut Proc & Co, Maoming 525000, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
Ti3C2; Mxene; Carbon nitride; Heterostructure construction; Photocatalytic degradation; PERSONAL CARE PRODUCTS; CARBON NITRIDE; WATER; REMOVAL; PHARMACEUTICALS; MICROPOLLUTANTS; PHOTOSYNTHESIS; CONSTRUCTION; DISSOCIATION; FILTRATION;
D O I
10.1016/j.jcis.2020.03.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solution of the increasingly important problem of aquatic pollution requires the use of an economical, energy-efficient, highly effective and environmentally-friendly catalyst. Polymeric carbon nitride (C3N4) has shown to be a promising metal-free photocatalyst that however suffers from strong charge recombination and poor conductivity, while MXenes have shown to be perfect co-catalysts for the photocatalytic process but show poor stability. In this study, we successfully constructed a robust heterostructure photocatalyst in which few-layer Ti3C2Tx was embedded into alkalized C3N4 without being oxidized. The photocatalyst showed stable and effective photocatalytic performance for the removal of tetracycline hydrochloride and other organic compounds under visible light irradiation. Different characterization methods were used to elucidate the morphology and structure of the asprepared photocatalyst. The robust heterostructure and the intimate interaction between the two constituents of the composite were verified. Based on the van der Waals heterostructure, Ti3C2Tx acts as the electron acceptor and helps to form Schottky junction, preventing charge recombination of the photocatalyst. And in the meantime, the electrons from C3N4 protect Ti3C2Tx from oxidation. SEM and XRD results demonstrated that the Ti3C2Tx structure remains unchanged after calcination and after photodegradation experiments. Furthermore, a possible mechanism for photocatalytic tetracycline hydrochloride degradation was proposed based on the results of radical scavenging experiments. This work provides a strategy to strengthen heterostructure between 2D materials, and shows that carbon nitride and Mxenes could be promising materials for photocatalytic wastewater pre-treatment applications. (C) 2020 Published by Elsevier Inc.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [31] Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets
    Pendyala, Prashant
    Lee, Juyun
    Kim, Seon Joon
    Yoon, Eui-Sung
    APPLIED SURFACE SCIENCE, 2022, 603
  • [32] UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding
    Zhou, Qianfan
    Qian, Kunpeng
    Fang, Jianhui
    Miao, Miao
    Cao, Shaomei
    Feng, Xin
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 134
  • [33] Ultrasound exfoliation of g-C3N4 with assistance of cadmium ions and synthesis of CdS/g-C3N4 ultrathin nanosheets with efficient photocatalytic activity
    Zhang, Lifang
    Huang, Furong
    Liang, Changhui
    Zhou, Liya
    Zhang, Xinguo
    Pang, Qi
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 60 : 643 - 650
  • [34] Impact of ligand on layered sulfur nanosheets/g-C3N4 nanocomposite for photocatalytic degradation
    Liu, Na
    Su, Yanwei
    Zheng, Siyi
    Tang, Yuchen
    Yu, Chunxia
    Li, Yuangang
    Shen, Lihua
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2025, 463
  • [35] Photocatalytic Degradation of Composites with Magnesium Aluminum Hydrotalcite Derived Metal Oxides and g-C3N4
    Yu, Mingwei
    Zhang, Lianhong
    Wen, Jie
    Zhang, Hui
    Liu, Faping
    Lv, Yanjun
    Zhao, Xiaodong
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2022, 32 (03) : 973 - 983
  • [36] Superior Adsorption and Photocatalytic Degradation Capability of Mesoporous LaFeO3/g-C3N4 for Removal of Oxytetracycline
    Xu, Ke
    Yang, Xiaosheng
    Ruan, Luda
    Qi, Shaolv
    Liu, Jianling
    Liu, Kaiyuan
    Pan, Shaoliang
    Feng, Guangwei
    Dai, Zeqin
    Yang, Xianjiong
    Li, Rong
    Feng, Jian
    CATALYSTS, 2020, 10 (03)
  • [37] Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production
    Shao, Mengmeng
    Shao, Yangfan
    Chai, Jianwei
    Qu, Yuanju
    Yang, Mingyang
    Wang, Zeli
    Yang, Ming
    Ip, Weng Fai
    Kwok, Chi Tat
    Shi, Xingqiang
    Lu, Zhouguang
    Wang, Shijie
    Wang, Xuesen
    Pan, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 16748 - 16756
  • [38] Photocatalytic Degradation of Selected Pharmaceuticals Using g-C3N4 and TiO2 Nanomaterials
    Smykalova, Aneta
    Sokolova, Barbora
    Foniok, Krystof
    Matejka, Vlastimil
    Praus, Petr
    NANOMATERIALS, 2019, 9 (09)
  • [39] Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets
    Lim, Gim Pao
    Soon, Chin Fhong
    Morsin, Marlia
    Ahmad, Mohd Khairul
    Nayan, Nafarizal
    Tee, Kian Sek
    CERAMICS INTERNATIONAL, 2020, 46 (12) : 20306 - 20312
  • [40] Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal
    Liu, Liang
    Luo, Xi
    Li, Yizhi
    Xu, Fen
    Gao, Zhaobo
    Zhang, Xiaoni
    Song, Yanhua
    Xu, Hui
    Li, Huaming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 537 : 516 - 523