Batalin-Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras

被引:0
作者
Liu, Liyu [1 ]
Ma, Wen [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hochschild cohomology; Batalin-Vilkovisky algebra; Van den Bergh duality; generalized Weyl algebra; GERSTENHABER ALGEBRAS; HOMOLOGY;
D O I
10.1007/s11464-021-0978-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We devote to the calculation of Batalin-Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi-Yau generalized Weyl algebras. We first establish a Van den Bergh duality at the level of complex. Then based on the results of Solotar et al., we apply Kowalzig and Krahmer's method to the Hochschild homology of generalized Weyl algebras, and translate the homological information into cohomological one by virtue of the Van den Bergh duality, obtaining the desired Batalin-Vilkovisky algebra structures. Finally, we apply our results to quantum weighted projective lines and Podles quantum spheres, and the Batalin-Vilkovisky algebra structures for them are described completely.
引用
收藏
页码:915 / 941
页数:27
相关论文
共 24 条
[11]   BATALIN-VILKOVISKY ALGEBRAS AND 2-DIMENSIONAL TOPOLOGICAL FIELD-THEORIES [J].
GETZLER, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) :265-285
[12]  
Ginzburg, ARXIV0612139
[13]   Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras [J].
Huebschmann, J .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (02) :425-+
[14]   ON OPERAD STRUCTURES OF MODULI SPACES AND STRING THEORY [J].
KIMURA, T ;
STASHEFF, J ;
VORONOV, AA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) :1-25
[15]   Batalin-Vilkovisky structures on Ext and Tor [J].
Kowalzig, Niels ;
Kraehmer, Ulrich .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 697 :159-219
[16]   The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra [J].
Lambre, Thierry ;
Zhou, Guodong ;
Zimmerman, Alexander .
JOURNAL OF ALGEBRA, 2016, 446 :103-131
[17]   NEW PERSPECTIVES ON THE BRST-ALGEBRAIC STRUCTURE OF STRING THEORY [J].
LIAN, BH ;
ZUCKERMAN, GJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :613-646
[18]   Homological smoothness and deformations of generalized Weyl algebras [J].
Liu, Liyu .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (02) :949-992
[19]   QUANTUM SPHERES [J].
PODLES, P .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (03) :193-202
[20]  
Solotar A, 2013, ANN I FOURIER, V63, P923