Comparison of machine learning techniques for predicting porosity of chalk

被引:13
|
作者
Nourani, Meysam [1 ]
Alali, Najeh [2 ]
Samadianfard, Saeed [3 ]
Band, Shahab S. [4 ]
Chau, Kwok-wing [5 ]
Shu, Chi-Min [6 ]
机构
[1] Geol Survey Denmark & Greenland GEUS, Reservoir Geol Dept, Copenhagen, Denmark
[2] Al Ayen Univ, Coll Petr Engn, Thi Gar 64001, Iraq
[3] Univ Tabriz, Fac Agr, Dept Water Engn, Tabriz, Iran
[4] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan
[5] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[6] Natl Yunlin Univ Sci & Technol, Grad Sch Engn Sci & Technol, Touliu 64002, Yunlin, Taiwan
关键词
Porosity; Chalk; Hand-held X-ray fluorescence; Random forest; Multilayer perceptron; Random forest optimized by genetic algorithm; Multilayer perceptron optimized by genetic algorithm; MULTILAYER PERCEPTRON; RANDOM FOREST; GENETIC ALGORITHM; DIAGENESIS; MODELS; OPTIMIZATION; CARBON; SHALE;
D O I
10.1016/j.petrol.2021.109853
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Precise and fast estimation of porosity is a vital element of reservoir characterization. A new technology for fast and reliable porosity prediction of chalk samples is presented by applying machine learning methods and X-ray fluorescence (XRF) elemental analysis. Input parameters of prediction models are based on rapid and accurate elemental analysis of chalk samples obtained from Hand-held X-ray fluorescence (HH-XRF) measurements. The intelligent models, including Random Forest (RF), Multilayer perceptron (MLP), Random Forest integrated by Genetic Algorithm (GA-RF) and Multilayer Perceptron integrated by Genetic Algorithm (GA-MLP), are trained and tested based on samples consisting of outcrop chalk samples from Rordal and Stevns Klint (ST) and core samples from Ekofisk Formation in the North Sea. Results are evaluated by sustainability index (SI), determination coefficient (R-2), correlation coefficient (CC), and Willmott's Index of agreement (WI). Results indicate that the combination of GA-RF intelligent method with XRF elemental analysis successfully provides an accurate model by 0.99, 0.02, 0.995 and 0.99 respectively for CC, SI, WI and R-2, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Machine Learning Based Solar Power Forecasting Techniques: Analysis and Comparison
    Ali, Muaiz
    Mohamed, H. Mohamed
    Alashwali, Abdulaziz
    Alfarraj, Motaz
    Khalid, Muhammad
    2022 IEEE PES 14TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE, APPEEC, 2022,
  • [12] Predicting the Overflowing of Urban Personholes Based on Machine Learning Techniques
    Chang, Ya-Hui
    Tseng, Chih-Wei
    Hsu, Hsien-Chieh
    WATER, 2023, 15 (23)
  • [13] Assessing Advanced Machine Learning Techniques for Predicting Hospital Readmission
    Alajmani, Samah
    Jambi, Kamal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (02) : 377 - 384
  • [14] Predicting human liver microsomal stability with machine learning techniques
    Sakiyama, Yojiro
    Yuki, Hitomi
    Moriya, Takashi
    Hattori, Kazunari
    Suzuki, Misaki
    Shimada, Kaoru
    Honma, Teruki
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2008, 26 (06) : 907 - 915
  • [15] Predicting Ion Channels Genes and Their Types With Machine Learning Techniques
    Han, Ke
    Wang, Miao
    Zhang, Lei
    Wang, Ying
    Guo, Mian
    Zh, Ming
    Zhao, Qian
    Zhang, Yu
    Zeng, Nianyin
    Wang, Chunyu
    FRONTIERS IN GENETICS, 2019, 10
  • [16] Predicting wax deposition using robust machine learning techniques
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    Ng, Cuthbert Shang Wui
    PETROLEUM, 2022, 8 (02) : 167 - 173
  • [17] Predicting Heating Load in Energy-Efficient Buildings Through Machine Learning Techniques
    Moayedi, Hossein
    Dieu Tien Bui
    Dounis, Anastasios
    Lyu, Zongjie
    Foong, Loke Kok
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [18] Applicability of Machine-Learning Techniques in Predicting Customer Defection
    Prasasti, Niken
    Ohwada, Hayato
    2014 1ST INTERNATIONAL SYMPOSIUM ON TECHNOLOGY MANAGEMENT AND EMERGING TECHNOLOGIES (ISTMET 2014), 2014, : 157 - 162
  • [19] Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
    Hussain, Dostdar
    Khan, Aftab Ahmed
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 939 - 949
  • [20] Predicting risk of satellite collisions using machine learning
    Tulczyjew, Lukasz
    Myller, Michal
    Kawulok, Michal
    Kostrzewa, Daniel
    Nalepa, Jakub
    JOURNAL OF SPACE SAFETY ENGINEERING, 2021, 8 (04): : 339 - 344