How to build and interpret a nomogram for cancer prognosis

被引:2573
作者
Iasonos, Alexia
Schrag, Deborah
Raj, Ganesh V.
Panageas, Katherine S.
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
[2] Univ Texas Dallas, SW Med Ctr, Dept Urol, Dallas, TX USA
关键词
D O I
10.1200/JCO.2007.12.9791
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Nomograms are widely used for cancer prognosis, primarily because of their ability to reduce statistical predictive models into a single numerical estimate of the probability of an event, such as death or recurrence, that is tailored to the profile of an individual patient. User-friendly graphical interfaces for generating these estimates facilitate the use of nomograms during clinical encounters to inform clinical decision making. However, the statistical underpinnings of these models require careful scrutiny, and the degree of uncertainty surrounding the point estimates requires attention. This guide provides a nonstatistical audience with a methodological approach for building, interpreting, and using nomograms to estimate cancer prognosis or other health outcomes.
引用
收藏
页码:1364 / 1370
页数:7
相关论文
共 30 条
[1]   Validation and limitations of use of a breast cancer nomogram predicting the likelihood of non-sentinel node involvement after positive sentinel node biopsy [J].
Alran, Severine ;
De Rycke, Yann ;
Fourchotte, Virginie ;
Charitansky, Helene ;
Laki, Fatima ;
Falcou, Marie Christine ;
Benamor, Myriam ;
Frencaux, Paul ;
Salmon, Remy Jacques ;
Sigal-Zafrani, Brigitte .
ANNALS OF SURGICAL ONCOLOGY, 2007, 14 (08) :2195-2201
[2]   Logistic regression when binary predictor variables are highly correlated [J].
Barker, L ;
Brown, C .
STATISTICS IN MEDICINE, 2001, 20 (9-10) :1431-1442
[3]   Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer [J].
Bochner, Bernard H. ;
Dalbagni, Guido ;
Kattan, Michael W. ;
Fearn, Paul ;
Vora, Kinjal ;
Seo, Hee Song ;
Zoref, Lauren ;
Abol-Enein, Hassan ;
Ghoneim, Mohamed A. ;
Bochner, Bernard H. ;
Dalbagni, Guido ;
Scardino, Peter T. ;
Bajorin, Dean ;
Skinner, Donald G. ;
Stein, John P. ;
Miranda, Gus ;
Gschwend, Juergen E. ;
Volkmer, Bjoern G. ;
Hautmann, Richard E. ;
Chang, Sam ;
Cookson, Michael ;
Smith, Joseph A. ;
Thalman, George ;
Studer, Urs E. ;
Lee, Cheryl T. ;
Montie, James ;
Wood, David ;
Puigvert, Fundacio ;
Palou, Juan ;
Fradet, Yyes ;
LaCombe, Louis ;
Simard, Pierre ;
Schoenberg, Mark P. ;
Lerner, Seth ;
Vazina, Amnon ;
Bassi, PierFrancesco ;
Murai, Masaru ;
Kikuchi, Eiji .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (24) :3967-3972
[4]   Predicting life expectancy in men with clinically localized prostate cancer [J].
Cowen, ME ;
Halasyamani, LK ;
Kattan, MW .
JOURNAL OF UROLOGY, 2006, 175 (01) :99-103
[5]   Use of nomograms to predict the risk of disease recurrence after definitive local therapy for prostate cancer [J].
Diblasio, CJ ;
Kattan, MW .
UROLOGY, 2003, 62 (6B) :9-18
[6]  
Eastham James A, 2002, Semin Urol Oncol, V20, P108, DOI 10.1053/suro.2002.32936
[7]  
Efron B., An Introduction to the Bootstrap
[8]   Validation of a postresection pancreatic adenocarcinorna nomogram for disease-specific survival [J].
Ferrone, CR ;
Kattan, MW ;
Tomlinson, JS ;
Thayer, SP ;
Brennan, MF ;
Warshaw, AL .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (30) :7529-7535
[9]   Cancer risk prediction models: A workshop on development, evaluation, and application [J].
Freedman, AN ;
Seminara, D ;
Gail, MH ;
Hartge, P ;
Colditz, GA ;
Ballard-Barbash, R ;
Pfeiffer, RM .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2005, 97 (10) :715-723
[10]   Classifier technology and the illusion of progress [J].
Hand, David J. .
STATISTICAL SCIENCE, 2006, 21 (01) :1-14