Finding and understanding pedal misapplication crashes using a deep learning natural language model

被引:4
|
作者
Bareiss, Max [1 ]
Smith, Colin [1 ]
Gabler, Hampton C. [1 ]
机构
[1] Virginia Tech, Dept Biomed Engn, Blacksburg, VA USA
关键词
Pedal misapplication; NMVCCS; deep learning; BERT; NLP;
D O I
10.1080/15389588.2021.1982616
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Objective The objective of this study was to develop a system which used the BERT natural language understanding model to identify pedal misapplication (PM) crashes from their crash narratives and validate the accuracy of the system. Methods The training dataset used for this study was 11 cases from the NMVCCS study and 952 cases from the North Carolina state crash database. Cases for this study were selected from their respective full datasets using a keyword search algorithm containing terms indicative of a pedal-related mistake. A BERT language model was used to classify each case narrative as either no pedal misapplication, PM by vehicle 1, PM by vehicle 2, or PM by vehicle 3. After training, the language model was used to determine the incidence of pedal misapplication in a test dataset of 8,668 North Carolina and NMVCCS cases and these results were compared to a manual review of the dataset. After manual review, 2,969 cases were pedal misapplications. Results The model's AUC ROC performance at detecting PM was quantified on the entire testing dataset to evaluate the power of the system to generalize to case narratives unseen at training time. The AUC ROC value was 0.9835, indicating strong generalization to all crash narratives. By choosing the optimal threshold using the ROC curve, the system correctly identified PM in 95.7% of crash narratives. When pedal misapplication was correctly identified, the correct vehicle was identified in 95.9% of cases. A total of 3,062 pedal misapplications were identified. The model labeled cases 353 times faster than a researcher. Conclusions The strong performance of the model suggests that the automated interpretation of case narratives can be used for future research studies without any manual review. This would save time and enable the use of datasets where manual review would be infeasible. The automated extraction of information from crash narratives using deep learning natural language models has not been demonstrated previously in the literature, to the best of the authors' knowledge. This technique can be applied to large, infrequently used datasets of crash narratives and extended to extract useful vehicle, occupant, or environment information to make these datasets amenable to traditional statistical analyses.
引用
收藏
页码:S169 / S172
页数:4
相关论文
共 50 条
  • [1] Understanding customer satisfaction via deep learning and natural language processing
    Aldunate, Angeles
    Maldonado, Sebastian
    Vairetti, Carla
    Armelini, Guillermo
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
  • [2] A Phishing-Attack-Detection Model Using Natural Language Processing and Deep Learning
    Benavides-Astudillo, Eduardo
    Fuertes, Walter
    Sanchez-Gordon, Sandra
    Nunez-Agurto, Daniel
    Rodriguez-Galan, German
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [3] Understanding the Efficiency of Deep Learning in Language Learning using Personalized Language Learning Apps
    Divya, R.
    Hema, N.
    LITERARY VOICE, 2021, 1 (15): : 240 - 249
  • [4] MULTI-CLASS AUTOMATED SPEECH LANGUAGE RECOGNITION USING NATURAL LANGUAGE PROCESSING WITH OPTIMAL DEEP LEARNING MODEL
    Al-anazi, Reema g.
    Alqahtani, Hamed
    Alzaidi, Muhammad swaileh a.
    Alanazi, Meshari h.
    AL Sultan, Hanan
    Alrowaily, Amal f.
    Aljabri, Jawhara
    Alqudah, Assal
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [5] Framework for Deep Learning-Based Language Models Using Multi-Task Learning in Natural Language Understanding: A Systematic Literature Review and Future Directions
    Samant, Rahul Manohar
    Bachute, Mrinal R.
    Gite, Shilpa
    Kotecha, Ketan
    IEEE ACCESS, 2022, 10 : 17078 - 17097
  • [6] Analysis of news sentiments using natural language processing and deep learning
    Vicari, Mattia
    Gaspari, Mauro
    AI & SOCIETY, 2021, 36 (03) : 931 - 937
  • [7] Analysis of news sentiments using natural language processing and deep learning
    Mattia Vicari
    Mauro Gaspari
    AI & SOCIETY, 2021, 36 : 931 - 937
  • [8] Syntax Vector Learning Using Correspondence for Natural Language Understanding
    Seo, Hyein
    Jung, Sangkeun
    Hwang, Taewook
    Kim, Hyunji
    Roh, Yoon-Hyung
    IEEE ACCESS, 2021, 9 : 84067 - 84078
  • [9] Predicting Pedestrian Involvement in Fatal Crashes Using a TabNet Deep Learning Model
    Al Ani, Omar
    Haroon, Saquib Mohammed
    Caragea, Doina
    Aziz, H. M. Abdul
    Fitzsimmons, Eric J.
    PROCEEDINGS OF THE 16TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON COMPUTATIONAL TRANSPORTATION SCIENCE, IWCTS 2023, 2023, : 19 - 27
  • [10] Evaluating Deep Learning Techniques for Natural Language Inference
    Eleftheriadis, Petros
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    APPLIED SCIENCES-BASEL, 2023, 13 (04):