Reversible Control of Protein Corona Formation on Gold Nanoparticles Using Host-Guest Interactions

被引:53
作者
Mosquera, Jesus [1 ]
Garcia, Isabel [1 ,2 ]
Henriksen-Lacey, Malou [1 ,2 ]
Martinez-Calvo, Miguel [4 ,5 ]
Dhanjani, Monica [1 ]
Mascarenas, Jose L. [4 ,5 ]
Liz-Marzan, Luis M. [1 ,2 ,3 ]
机构
[1] Basque Res & Technol Alliance BRTA, CIC BiomaGUNE, Donostia San Sebastian 20014, Spain
[2] CIBER Bioingn Biomat & Nanomed CIBER BBN, Donostia San Sebastian 20014, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[4] Univ Santiago de Compostela, Dept Quim Organ, Santiago De Compostela 15782, Spain
[5] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, Santiago De Compostela 15782, Spain
基金
欧洲研究理事会;
关键词
protein corona; gold nanoparticles; host-guest chemistry; cellular uptake; photothermal therapy; CELLULAR UPTAKE; NANORODS; FUNCTIONALITY; STABILITY; SIZE;
D O I
10.1021/acsnano.9b08752
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When nanoparticles (NPs) are exposed to biological media, proteins are adsorbed, forming a so-called protein corona (PC). This cloud of protein aggregates hampers the targeting and transport capabilities of the NPs, thereby compromising their biomedical applications. Therefore, there is a high interest in the development of technologies that allow control over PC formation, as this would provide a handle to manipulate NPs in biological fluids. We present a strategy that enables the reversible disruption of the PC using external stimuli, thereby allowing a precise regulation of NP cellular uptake. The approach, demonstrated for gold nanoparticles (AuNPs), is based on a biorthogonal, supramolecular host-guest interactions between an anionic dye bound to the AuNP surface and a positively charged macromolecular cage. This supramolecular complex effectively behaves as a zwitterionic NP ligand, which is able not only to prevent PC formation but also to disrupt a previously formed hard corona. With this supramolecular stimulus, the cellular internalization of AuNPs can be enhanced by up to 30-fold in some cases, and even NP cellular uptake in phagocytic cells can be regulated. Additionally, we demonstrate that the conditional cell uptake of purposely designed gold nanorods can be used to selectively enhance photothermal cell death.
引用
收藏
页码:5382 / 5391
页数:10
相关论文
共 44 条
[1]   Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy [J].
Aggarwal, Parag ;
Hall, Jennifer B. ;
McLeland, Christopher B. ;
Dobrovolskaia, Marina A. ;
McNeil, Scott E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (06) :428-437
[2]   Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells [J].
Ayala-Orozco, Ciceron ;
Urban, Cordula ;
Knight, Mark W. ;
Urban, Alexander Skyrme ;
Neumann, Oara ;
Bishnoi, Sandra W. ;
Mukherjee, Shaunak ;
Goodman, Amanda M. ;
Charron, Heather ;
Mitchell, Tamika ;
Shea, Martin ;
Roy, Ronita ;
Nanda, Sarmistha ;
Schiff, Rachel ;
Halas, Naomi J. ;
Joshi, Amit .
ACS NANO, 2014, 8 (06) :6372-6381
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm [J].
Chang, Huei-Huei ;
Murphy, Catherine J. .
CHEMISTRY OF MATERIALS, 2018, 30 (04) :1427-1435
[5]   COAGULATION OF COLLOIDAL GOLD [J].
ENUSTUN, BV ;
TURKEVICH, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963, 85 (21) :3317-+
[6]   Glycans as Biofunctional Ligands for Gold Nanorods: Stability and Targeting in Protein-Rich Media [J].
Garcia, Isabel ;
Sanchez-Iglesias, Ana ;
Henriksen-Lacey, Malou ;
Grzelczak, Marek ;
Penades, Soledad ;
Liz-Marzan, Luis M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3686-3692
[7]   Zwitterionic-Coated "Stealth" Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake by the Mononuclear Phagocyte System [J].
Garcia, Karina Pombo ;
Zarschler, Kristof ;
Barbaro, Lisa ;
Barreto, Jose A. ;
O'Malley, William ;
Spiccia, Leone ;
Stephan, Holger ;
Graham, Bim .
SMALL, 2014, 10 (13) :2516-2529
[8]   Gold Nanoparticles for Biology and Medicine [J].
Giljohann, David A. ;
Seferos, Dwight S. ;
Daniel, Weston L. ;
Massich, Matthew D. ;
Patel, Pinal C. ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) :3280-3294
[9]   Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods [J].
Gonzalez-Rubio, Guillermo ;
Kumar, Vished ;
Llombart, Pablo ;
Diaz-Nunez, Pablo ;
Bladt, Eva ;
Altantzis, Thomas ;
Bals, Sara ;
Pena-Rodriguez, Ovidio ;
Noya, Eva G. ;
MacDowell, Luis G. ;
Guerrero-Martinez, Andres ;
Liz-Marzan, Luis M. .
ACS NANO, 2019, 13 (04) :4424-4435
[10]   Nanoparticle uptake: The phagocyte problem [J].
Gustafson, Heather Herd ;
Holt-Casper, Dolly ;
Grainger, David W. ;
Ghandehari, Hamidreza .
NANO TODAY, 2015, 10 (04) :487-510