Multi-material 3D bioprinting of porous constructs for cartilage regeneration

被引:90
作者
Ruiz-Cantu, Laura [1 ,2 ]
Gleadall, Andrew [3 ]
Faris, Callum [4 ]
Segal, Joel [5 ]
Shakesheff, Kevin [2 ]
Yang, Jing [2 ]
机构
[1] Univ Nottingham, Fac Engn, Ctr Addit Mfg, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham, Fac Sci, Regenerat Med & Cellular Therapies Div, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Loughborough, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[4] Poole Hosp, Dept Otorhinolaryngol & Facial Plast Reconstruct, Poole BH15 2JB, Dorset, England
[5] Univ Nottingham, Fac Engn, Adv Mfg Technol Res Grp, Univ Pk, Nottingham NG7 2RD, England
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2020年 / 109卷
基金
英国工程与自然科学研究理事会;
关键词
Tissue engineering; Cartilage; Chondrocytes; Bioprinting; 3D printing; Surface porosity; Polycaprolactone; GelMA; Multi-material 3D printing; TISSUE-ENGINEERED CARTILAGE; IN-VITRO; HYDROGELS; CELLS; RECONSTRUCTION; CHONDROCYTES; ALGINATE;
D O I
10.1016/j.msec.2019.110578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] High Hopes for the Biofabrication of Articular Cartilage-What Lies beyond the Horizon of Tissue Engineering and 3D Bioprinting?
    Sbirkov, Yordan
    Redzheb, Murad
    Forraz, Nico
    Mcguckin, Colin
    Sarafian, Victoria
    BIOMEDICINES, 2024, 12 (03)
  • [22] Fabrication of Multi-Channel Nerve Guidance Conduits Containing Schwann Cells Based on Multi-Material 3D Bioprinting
    Zhang, Liming
    Zhang, Hui
    Wang, Heran
    Guo, Kai
    Zhu, Huixuan
    Li, Song
    Gao, Feiyang
    Li, Shijie
    Yang, Zhenda
    Liu, Xin
    Zheng, Xiongfei
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (05) : 1046 - 1054
  • [23] 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering
    Singh, Yogendra Pratap
    Bandyopadhyay, Ashutosh
    Mandal, Biman B.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (37) : 33684 - 33696
  • [24] 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering
    You, Fu
    Wu, Xia
    Zhu, Ning
    Lei, Ming
    Eames, B. Frank
    Chen, Xiongbiao
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (07): : 1200 - 1210
  • [25] Progress in 3D Bioprinting Technology for Osteochondral Regeneration
    Lafuente-Merchan, Markel
    Ruiz-Alonso, Sandra
    Garcia-Villen, Fatima
    Gallego, Idoia
    Galvez-Martin, Patricia
    Saenz-del-Burgo, Laura
    Pedraz, Jose Luis
    PHARMACEUTICS, 2022, 14 (08)
  • [26] Mechanically Tunable Bioink for 3D Bioprinting of Human Cells
    Forget, Aurelien
    Blaeser, Andreas
    Miessmer, Florian
    Koepf, Marius
    Campos, Daniela F. Duarte
    Voelcker, Nicolas H.
    Blencowe, Anton
    Fischer, Horst
    Shastri, V. Prasad
    ADVANCED HEALTHCARE MATERIALS, 2017, 6 (20)
  • [27] Evaluation of a synthetic peptide-based bioink (PeptiInk Alpha 1) for in vitro 3D bioprinting of cartilage tissue models
    Santos-Beato, Patricia
    Pitsillides, Andrew A.
    Saiani, Alberto
    Miller, Aline
    Torii, Ryo
    Kalaskar, Deepak M.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 450 - 465
  • [28] Recent trends in embedded 3D bioprinting of vascularized tissue constructs
    Cho, Won-Woo
    Park, Wonbin
    Cho, Dong-Woo
    BIOFABRICATION, 2025, 17 (02)
  • [29] Application and development of 3D bioprinting in cartilage tissue engineering
    Li, Mingyang
    Sun, Daocen
    Zhang, Juan
    Wang, Yanmei
    Wei, Qinghua
    Wang, Yanen
    BIOMATERIALS SCIENCE, 2022, 10 (19) : 5430 - 5458
  • [30] 3D Bioprinting Using a Templated Porous Bioink
    Armstrong, James P. K.
    Burke, Madeline
    Carter, Benjamin M.
    Davis, Sean A.
    Perriman, Adam W.
    ADVANCED HEALTHCARE MATERIALS, 2016, 5 (14) : 1724 - 1730