Grain size dependence of Young's modulus and hardness for nanocrystalline NiTi shape memory alloy

被引:47
作者
Xia, Minglu [1 ,2 ]
Liu, Pan [2 ]
Sun, Qingping [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
[2] Wuhan Univ, Sch Civil Engn, Wuhan, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Nanocrystalline NiTi shape memory alloy; Grain size; Young's modulus; Hardness; NONLINEAR TORSIONAL VIBRATION; ELASTIC-CONSTANTS; TRANSFORMATION; BEHAVIOR;
D O I
10.1016/j.matlet.2017.10.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, grain size (GS) dependence of Young's modulus and hardness for nanocrystalline NiTi shape memory alloy is investigated by experiments. Amorphous NiTi with nanocrystalline debris is fabricated via cold-rolling and polycrystalline NiTi with average GS from 10 nm to 120 nm is obtained by subsequent annealing. Young's modulus and hardness of nanocrystalline NiTi are quantified by macroscopic isothermal tension and microscopic nanoindentation. It is shown that Young's modulus of nanocrystalline NiTi first decreases (for GS < 62 nm) and then increases (for GS > 62 nm) with GS in the nano-scale region. The non-monotonic GS dependence of Young's modulus originates from the combined effects of grain size and volume fractions of austenite, martensite and amorphous phase in the material. It is also shown that with the increase of GS up to 120 nm, hardness of nanocrystalline NiTi monotonically decreases due to the reduced nominal phase transition stress and plastic yielding stress. Such GS dependence of hardness can be utilized for rapid determination of GS in nanocrystalline NiTi via nanoindentation hardness test. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 355
页数:4
相关论文
共 20 条
[1]   Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J].
Ahadi, A. ;
Matsushita, Y. ;
Sawaguchi, T. ;
Sun, Q. P. ;
Tsuchiya, K. .
ACTA MATERIALIA, 2017, 124 :79-92
[2]   Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-Effects of grain size [J].
Ahadi, Aslan ;
Sun, Qingping .
APPLIED PHYSICS LETTERS, 2013, 103 (02)
[3]   NANOCRYSTALLINE MATERIALS [J].
BIRRINGER, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 :33-43
[4]   Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy [J].
Huang, X ;
Liu, Y .
SCRIPTA MATERIALIA, 2001, 45 (02) :153-160
[5]   Effects of phase transition on the hardness of shape memory alloys [J].
Kang, Guozheng ;
Yan, Wenyi .
APPLIED PHYSICS LETTERS, 2009, 94 (26)
[6]   Evolution of microstructure and property of NiTi alloy induced by cold rolling [J].
Li, Y. ;
Li, J. Y. ;
Liu, M. ;
Ren, Y. Y. ;
Chen, F. ;
Yao, G. C. ;
Mei, Q. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 653 :156-161
[7]   Apparent modulus of elasticity of near-equiatomic NiTi [J].
Liu, Y ;
Xiang, H .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 270 (1-2) :154-159
[8]   Grain size dependence of the elastic modulus in nanostructured NiTi [J].
Mei, Q. S. ;
Zhang, L. ;
Tsuchiya, K. ;
Gao, H. ;
Ohmura, T. ;
Tsuzaki, K. .
SCRIPTA MATERIALIA, 2010, 63 (10) :977-980
[9]   Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying [J].
Mousavi, T. ;
Karimzadeh, F. ;
Abbasi, M. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 487 (1-2) :46-51
[10]   AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS [J].
OLIVER, WC ;
PHARR, GM .
JOURNAL OF MATERIALS RESEARCH, 1992, 7 (06) :1564-1583