Algorithms for Large, Sparse Network Alignment Problems

被引:92
|
作者
Bayati, Mohsen [1 ]
Gerritsen, Margot [2 ]
Gleich, David F. [3 ]
Saberi, Amin [4 ]
Wang, Ying [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Energy Resources Engn Dept, Stanford, CA 94305 USA
[3] Stanford Univ, ICME, Stanford, CA 94305 USA
[4] Stanford Univ, MS&E Dept, Stanford, CA 94305 USA
来源
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING | 2009年
关键词
network alignment; belief propagation; graph matching; message-passing; PROTEIN-INTERACTION NETWORKS; GLOBAL ALIGNMENT;
D O I
10.1109/ICDM.2009.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new distributed algorithm for sparse variants of the network alignment problem, which occurs in a variety of data mining areas including systems biology, database matching, and computer vision. Our algorithm uses a belief propagation heuristic and provides near optimal solutions for this NP-hard combinatorial optimization problem. We show that our algorithm is faster and outperforms or ties existing algorithms on synthetic problems, a problem in bioinformatics, and a problem in ontology matching. We also provide a unified framework for studying and comparing all network alignment solvers.
引用
收藏
页码:705 / +
页数:2
相关论文
共 50 条
  • [1] Message-Passing Algorithms for Sparse Network Alignment
    Bayati, Mohsen
    Gleich, David F.
    Saberi, Amin
    Wang, Ying
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2013, 7 (01)
  • [2] SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT
    Nassar, Huda
    Kollias, Georgios
    Grama, Ananth
    Gleich, David F.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) : S592 - S611
  • [3] Credible seed identification for large-scale structural network alignment
    Wang, Chenxu
    Wang, Yang
    Zhao, Zhiyuan
    Qin, Dong
    Luo, Xiapu
    Qin, Tao
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) : 1744 - 1776
  • [4] Boosting Graph Alignment Algorithms
    Kyster, Alexander Frederiksen
    Nielsen, Simon Daugaard
    Hermanns, Judith
    Mottin, Davide
    Karras, Panagiotis
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3166 - 3170
  • [5] Network alignment
    Tang, Rui
    Yong, Ziyun
    Jiang, Shuyu
    Chen, Xingshu
    Liu, Yaofang
    Zhang, Yi-Cheng
    Sun, Gui-Quan
    Wang, Wei
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2025, 1107 : 1 - 45
  • [6] Metabolic network alignment in large scale by network compression
    Ay, Ferhat
    Dang, Michael
    Kahveci, Tamer
    BMC BIOINFORMATICS, 2012, 13
  • [7] Domain-Adversarial Network Alignment
    Hong, Huiting
    Li, Xin
    Pan, Yuangang
    Tsang, Ivor W.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3211 - 3224
  • [8] Discovering large conserved functional components in global network alignment by graph matching
    Zhu, Yuanyuan
    Li, Yuezhi
    Liu, Juan
    Qin, Lu
    Yu, Jeffrey Xu
    BMC GENOMICS, 2018, 19
  • [9] Multiple Network Alignment via MultiMAGNA plus
    Vijayan, Vipin
    Milenkovic, Tijana
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (05) : 1669 - 1682
  • [10] SANA: simulated annealing far outperforms many other search algorithms for biological network alignment
    Mamano, Nil
    Hayes, Wayne B.
    BIOINFORMATICS, 2017, 33 (14) : 2156 - 2164