Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration

被引:50
|
作者
Huang, Zonghou [1 ]
Li, Huang [1 ]
Mei, Wenxin [1 ]
Zhao, Chunpeng [1 ]
Sun, Jinhua [1 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion batteries safety; Thermal runaway; Nail penetration; Critical depth; Short circuit; INTERNAL SHORT CIRCUITS; ION BATTERY; ABUSE TESTS; HIGH-POWER; PROPAGATION; SAFETY; STABILITY; MODEL; MANAGEMENT; CAPACITY;
D O I
10.1007/s10694-020-00967-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nail penetration experiment has become one of the commonly used methods to study the short circuit in lithium-ion battery safety. A series of penetration tests using the stainless steel nail on 18,650 lithium iron phosphate (LiFePO4) batteries under different conditions are conducted in this work. The effects of the states of charge (SOC), penetration positions, penetration depths, penetration speeds and nail diameters on thermal runaway (TR) are investigated. And the accelerating rate calorimeter is applied to reveal the thermal runaway mechanism. The experimental results show that the higher the SOC of the battery, the higher the possibility and risk of TR of the battery, and there seems to be a critical penetration depth where TR occurs. The battery exhibits higher average temperature at higher penetration speeds. Whether the battery get into TR is not related to the penetration speed. When the penetration location near the positive pole and negative pole,the risk of thermal runaway is much higher than the centre position of the battery. The larger the diameter of the nail, the lower the overall temperature of the battery. What's more, the results of the penetration tests under the condition of parameter coupling shows that the average temperature of battery are greatly affected by the parameters of SOC, penetration position. The temperature of the LiFePO4 battery is within 200 degrees C when the TR occurs induced by the penetration, which is mainly due to the incomplete exothermic reaction inside the battery.
引用
收藏
页码:2405 / 2426
页数:22
相关论文
共 50 条
  • [21] Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse
    Chai, Zhixiong
    Li, Junqiu
    Liu, Ziming
    Liu, Zhengnan
    Jin, Xin
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [22] Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Li, Lun
    Ju, Xiaoyu
    Yang, Lizhong
    RENEWABLE ENERGY, 2024, 220
  • [23] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    Tang, W.
    Xu, X. M.
    Li, R. Z.
    Jin, H. F.
    Cao, L. D.
    Wang, H. M.
    IONICS, 2020, 26 (12) : 6133 - 6143
  • [24] Revealing the quasi-solid-state electrolyte role on the thermal runaway behavior of lithium metal battery
    Chen, Shiyao
    Peng, Qingkui
    Wei, Zesen
    Li, Yuxuan
    Yue, Yongbing
    Zhang, Yue
    Zeng, Wei
    Jin, Kaiqiang
    Jiang, Lihua
    Wang, Qingsong
    ENERGY STORAGE MATERIALS, 2024, 70
  • [25] Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery
    Huang, Zonghou
    Yu, Yin
    Duan, Qiangling
    Qin, Peng
    Sun, Jinhua
    Wang, Qingsong
    APPLIED ENERGY, 2022, 325
  • [26] Research of Thermal Runaway and Internal Evolution Mechanism of Lithium Iron Phosphate Energy Storage Battery
    Liu Y.
    Tao F.
    Sun L.
    Guo D.
    Ma Y.
    Liu H.
    Xiao P.
    Gaodianya Jishu/High Voltage Engineering, 2021, 47 (04): : 1333 - 1343
  • [27] Thermal Behavior Simulation of Lithium Iron Phosphate Energy Storage Battery
    Yu, Hao
    Cai, Jun
    Zhang, Xiaoyan
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2024, 15 (04) : 521 - 529
  • [28] Overcharge Thermal Runaway Multi-parameter Characteristics and Thermal Runaway Suppression Technology of Lithium Iron Phosphate Energy Storage Battery
    Tang, Jia
    Yu, Zixuan
    Li, Yupei
    Xie, Xiaojun
    Cheng, Yonghong
    Meng, Guodong
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (10): : 4724 - 4733
  • [29] Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study
    Wilke, Stephen
    Schweitzer, Ben
    Khateeb, Siddique
    Al-Hallaj, Said
    JOURNAL OF POWER SOURCES, 2017, 340 : 51 - 59
  • [30] Inhibition Effect of Liquid Nitrogen on Suppression of Thermal Runaway in Large Lithium Iron Phosphate Batteries
    Yin, Bo
    Yu, Xianyu
    Ruan, Hui
    He, Shujing
    Wang, Zhi
    Shi, Bobo
    Li, Zhihua
    Liu, Hang
    FIRE TECHNOLOGY, 2024,